IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v11y2008i1p81-93.html
   My bibliography  Save this article

An estimation of joint kinematics for a standing reach task using ground reaction data

Author

Listed:
  • S. Fioretti
  • M. Scocco

Abstract

The objective of this work was to derive a procedure able to estimate joint kinematics, relative to a simple, yet functionally relevant, motor task, starting from ground reaction data. The minimum number of input data has been used: force platform data, few and simple measurements relative to the subject, and protocol-specific parameters. Standing reach (SR) is the motor task analysed. The biomechanical model is a two degrees-of-freedom inverted pendulum moving on the vertical sagittal plane. Joint kinematics has been estimated solving the related direct dynamic problem stated in function of ground reaction data. The original nonlinear differential equation system of the model showed a high sensitivity to errors affecting initial conditions and experimental input data. Consequently, an approximate solution has been looked for in order to reduce the coupling between the model differential equations. This was possible taking into account the peculiar characteristics of the motor task. An optimization procedure has been deemed necessary in order to minimize the effects of the assumed approximation. The method has been tested both with simulated and with experimental data. In this latter case the validation of the angular kinematics estimated by the proposed method has been performed by means of data obtained by a stereophotogrammetric system. Results show a satisfactory behaviour of the whole optimization procedure. Very good results have been obtained in the case of slow reaching tasks.

Suggested Citation

  • S. Fioretti & M. Scocco, 2008. "An estimation of joint kinematics for a standing reach task using ground reaction data," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 11(1), pages 81-93.
  • Handle: RePEc:taf:gcmbxx:v:11:y:2008:i:1:p:81-93
    DOI: 10.1080/10255840701552119
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255840701552119
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255840701552119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:11:y:2008:i:1:p:81-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.