IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v23y2017i15p1468-1511.html
   My bibliography  Save this article

Gaussian models for Euro high grade government yields

Author

Listed:
  • Marco Realdon

Abstract

This paper tests affine, quadratic and Black-type Gaussian models on Euro area triple A Government bond yields for maturities up to 30 years. Quadratic Gaussian models beat affine Gaussian models both in-sample and out-of-sample. A Black-type model best fits the shortest maturities and the extremely low yields since 2013, but worst fits the longest maturities. Even for quadratic models we can infer the latent factors from some yields observed without errors, which makes quasi-maximum likelihood (QML) estimation feasible. New specifications of quadratic models fit the longest maturities better than does the ‘classic’ specification of Ahn et al. [2002. ‘Quadratic Term Structure Models: Theory and Evidence.’ The Review of Financial Studies 15 (1): 243–288], but the opposite is true for the shortest maturities. These new specifications are more suitable to QML estimation. Overall quadratic models seem preferable to affine Gaussian models, because of superior empirical performance, and to Black-type models, because of superior tractability. This paper also proposes the vertical method of lines (MOL) to solve numerically partial differential equations (PDEs) for pricing bonds under multiple non-independent stochastic factors. ‘Splitting’ the PDE drastically reduces computations. Vertical MOL can be considerably faster and more accurate than finite difference methods.

Suggested Citation

  • Marco Realdon, 2017. "Gaussian models for Euro high grade government yields," The European Journal of Finance, Taylor & Francis Journals, vol. 23(15), pages 1468-1511, December.
  • Handle: RePEc:taf:eurjfi:v:23:y:2017:i:15:p:1468-1511
    DOI: 10.1080/1351847X.2016.1173082
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1351847X.2016.1173082
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1351847X.2016.1173082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:23:y:2017:i:15:p:1468-1511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.