IDEAS home Printed from
   My bibliography  Save this article

Earnings announcements by UK companies: Evidence of extreme events?


  • Carlos Alegria
  • George McKenzie
  • Simon Wolfe


This paper investigates the abnormal share return dispersion occurring when companies announce their interim or final earnings. Whereas, prior research has focused on abnormal returns, little attention has been given to investigating the dispersion of the abnormal returns. We find strong empirical evidence supporting an abnormal dispersion of share returns on event dates. Moreover, we find that these public announcements are sources of extreme share price movements. Our study provides a step forward in identifying factors underlying the leptokurtosis that is traditionally found in time series stock market returns. Our data sample is comprised of interim and full year results for mid-to-large capitalisation UK companies for the period 1984-2005. Consistent with the extant literature on this subject, we find no evidence of market inefficiency around the event date, or straightforward arbitrage opportunities on the event date. However, we find using Paretian statistics that the abnormal return dispersion on the event date is three times higher than on normal non-event days.

Suggested Citation

  • Carlos Alegria & George McKenzie & Simon Wolfe, 2009. "Earnings announcements by UK companies: Evidence of extreme events?," The European Journal of Finance, Taylor & Francis Journals, vol. 15(2), pages 137-156.
  • Handle: RePEc:taf:eurjfi:v:15:y:2009:i:2:p:137-156 DOI: 10.1080/13518470802466261

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
    2. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    3. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    4. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
    5. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
    6. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    7. Tobias Rydén & Timo Teräsvirta & Stefan Åsbrink, 1998. "Stylized facts of daily return series and the hidden Markov model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(3), pages 217-244.
    8. Fabozzi, Frank J. & Francis, Jack Clark, 1978. "Beta as a Random Coefficient," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 13(01), pages 101-116, March.
    9. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
    10. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, March.
    11. Sunder, Shyam, 1980. " Stationarity of Market Risk: Random Coefficients Tests for Individual Stocks," Journal of Finance, American Finance Association, vol. 35(4), pages 883-896, September.
    12. Abell, John D. & Krueger, Thomas M., 1989. "Macroeconomic influences on beta," Journal of Economics and Business, Elsevier, vol. 41(2), pages 185-193, May.
    13. K. Giannopoulos, 1995. "Estimating the time Varying Components of international stock markets' risk," The European Journal of Finance, Taylor & Francis Journals, vol. 1(2), pages 129-164.
    14. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    15. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Jin Wu, 2005. "A Framework for Exploring the Macroeconomic Determinants of Systematic Risk," American Economic Review, American Economic Association, vol. 95(2), pages 398-404, May.
    16. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    17. Laurent, Sebastien & Peters, Jean-Philippe, 2002. " G@RCH 2.2: An Ox Package for Estimating and Forecasting Various ARCH Models," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 447-485, July.
    18. repec:cup:etheor:v:11:y:1995:i:1:p:122-50 is not listed on IDEAS
    19. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    20. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    21. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    22. Braun, Phillip A & Nelson, Daniel B & Sunier, Alain M, 1995. " Good News, Bad News, Volatility, and Betas," Journal of Finance, American Finance Association, vol. 50(5), pages 1575-1603, December.
    23. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    24. Ho-Chuan Huang, 2000. "Tests of regimes - switching CAPM," Applied Financial Economics, Taylor & Francis Journals, vol. 10(5), pages 573-578.
    25. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    26. repec:bla:restud:v:65:y:1998:i:3:p:361-93 is not listed on IDEAS
    27. Collins, Daniel W & Ledolter, Johannes & Rayburn, Judy Dawson, 1987. "Some Further Evidence on the Stochastic Properties of Systematic Risk," The Journal of Business, University of Chicago Press, vol. 60(3), pages 425-448, July.
    28. Groenewold, Nicolaas & Fraser, Patricia, 1999. "Time-varying estimates of CAPM betas," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 48(4), pages 531-539.
    29. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    30. Lie, Frida & Brooks, Robert & Faff, Robert, 2000. "Modelling the Equity Beta Risk of Australian Financial Sector Companies," Australian Economic Papers, Wiley Blackwell, vol. 39(3), pages 301-311, September.
    31. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    32. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    33. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    34. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    35. repec:bla:jbfnac:v:27:y:2000:i:5&6:p:523-554 is not listed on IDEAS
    36. Bos, T & Newbold, P, 1984. "An Empirical Investigation of the Possibility of Stochastic Systematic Risk in the Market Model," The Journal of Business, University of Chicago Press, vol. 57(1), pages 35-41, January.
    37. Robert W. Faff & David Hillier & Joseph Hillier, 2000. "Time Varying Beta Risk: An Analysis of Alternative Modelling Techniques," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 27(5&6), pages 523-554.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:15:y:2009:i:2:p:137-156. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.