IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v37y2018i6p551-576.html
   My bibliography  Save this article

Robust parametric tests of constant conditional correlation in a MGARCH model

Author

Listed:
  • Wasel Shadat
  • Chris Orme

Abstract

This article provides a rigorous asymptotic treatment of new and existing asymptotically valid conditional moment (CM) testing procedures of the constant conditional correlation (CCC) assumption in a multivariate GARCH model. Full and partial quasi maximum likelihood estimation (QMLE) frameworks are considered, as is the robustness of these tests to non-normality. In particular, the asymptotic validity of the LM procedure proposed by Tse (2000) is analyzed, and new asymptotically robust versions of this test are proposed for both estimation frameworks. A Monte Carlo study suggests that a robust Tse test procedure exhibits good size and power properties, unlike the original variant which exhibits size distortion under non-normality.

Suggested Citation

  • Wasel Shadat & Chris Orme, 2018. "Robust parametric tests of constant conditional correlation in a MGARCH model," Econometric Reviews, Taylor & Francis Journals, vol. 37(6), pages 551-576, July.
  • Handle: RePEc:taf:emetrv:v:37:y:2018:i:6:p:551-576
    DOI: 10.1080/07474938.2015.1122120
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2015.1122120
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2015.1122120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:37:y:2018:i:6:p:551-576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.