IDEAS home Printed from
   My bibliography  Save this article

GARCH Model Estimation Using Estimated Quadratic Variation


  • John W. Galbraith
  • Victoria Zinde-Walsh
  • Jingmei Zhu


We consider estimates of the parameters of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models obtained using auxiliary information on latent variance which may be available from higher-frequency data, for example from an estimate of the daily quadratic variation such as the realized variance. We obtain consistent estimators of the parameters of the infinite Autoregressive Conditional Heteroskedasticity (ARCH) representation via a regression using the estimated quadratic variation, without requiring that it be a consistent estimate; that is, variance information containing measurement error can be used for consistent estimation. We obtain GARCH parameters using a minimum distance estimator based on the estimated ARCH parameters. With Least Absolute Deviations (LAD) estimation of the truncated ARCH approximation, we show that consistency and asymptotic normality can be obtained using a general result on LAD estimation in truncated models of infinite-order processes. We provide simulation evidence on small-sample performance for varying numbers of intra-day observations.

Suggested Citation

  • John W. Galbraith & Victoria Zinde-Walsh & Jingmei Zhu, 2015. "GARCH Model Estimation Using Estimated Quadratic Variation," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1172-1192, December.
  • Handle: RePEc:taf:emetrv:v:34:y:2015:i:6-10:p:1172-1192
    DOI: 10.1080/07474938.2014.956629

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. John W. Galbraith & Liam Cheung, 2013. "Forecasting financial volatility with combined QML and LAD-ARCH estimators of the GARCH model," CIRANO Working Papers 2013s-19, CIRANO.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:34:y:2015:i:6-10:p:1172-1192. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.