IDEAS home Printed from
   My bibliography  Save this article

Bayesian Analysis of DSGE Models—Some Comments


  • Malin Adolfson
  • Jesper Linde
  • Mattias Villani


Sungbae An and Frank Schorfheide have provided an excellent review of the main elements of Bayesian inference in Dynamic Stochastic General Equilibrium (DSGE) models. Bayesian methods have, for reasons clearly outlined in the paper, a very natural role to play in DSGE analysis, and the appeal of the Bayesian paradigm is indeed strongly evidenced by the flood of empirical applications in the area over the last couple of years. We expect their paper to be the natural starting point for applied economists interested in learning about Bayesian techniques for analyzing DSGE models, and as such the paper is likely to have a strong influence on what will be considered best practice for estimating DSGE models. The authors have, for good reasons, chosen a stylized six-equation model to present the methodology. We shall use here the large-scale model in Adolfson et al. (2005), henceforth ALLV, to illustrate a few econometric problems which we have found to be especially important as the size of the model increases. The model in ALLV is an open economy extension of the closed economy model in Christiano et al. (2005). It consists of 25 log-linearized equations, which can be written as a state space representation with 60 state variables, many of them unobserved. Fifteen observed unfiltered time series are used to estimate 51 structural parameters. An additional complication compared to the model in An and Schorfheide's paper is that some of the coefficients in the measurement equation are non-linear functions of the structural parameters. The model is currently the main vehicle for policy analysis at Sveriges Riksbank (Central Bank of Sweden) and similar models are being developed in many other policy institutions, which testifies to the model's practical relevance. The version considered here is estimated on Euro area data over the period 1980Q1-2002Q4. We refer to ALLV for details.

Suggested Citation

  • Malin Adolfson & Jesper Linde & Mattias Villani, 2007. "Bayesian Analysis of DSGE Models—Some Comments," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 173-185.
  • Handle: RePEc:taf:emetrv:v:26:y:2007:i:2-4:p:173-185
    DOI: 10.1080/07474930701220121

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Bayesian; DSGE; MCMC; Marginal likelihood;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:26:y:2007:i:2-4:p:173-185. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.