IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Using Dynamic Forecasting Genetic Programming (Dfgp) To Forecast United States Gross Domestic Product (Us Gdp) With Military Expenditure As An Explanatory Variable

Listed author(s):
  • Neal Wagner
  • Jurgen Brauer

Classic time-series forecasting models can be divided into exponential smoothing, regression, ARIMA, threshold, and GARCH models. Functional form is investigator-specified, and all methods assume that the data generation process across all segments of the examined time-series is constant. In contrast, the aim of heuristic methods is to automate the discovery of functional form and permit different segments of a time-series to stem from different underlying data generation processes. These methods are categorized into those based on neural networks (NN) and those based on evolutionary computation, the latter further divided into genetic algorithms (GA), evolutionary programming (EP), and genetic programming (GP). However, the duration of the time-series itself is still investigator determined. This paper uses a dynamic forecasting version of GP (DFGP), where even the length of the time-series is automatically discovered. The method is applied to an examination of US GDP that includes military expenditure among its determinants and is compared to a regression-based forecast. We find that DFGP and a regression-based forecast yield comparable results but with the significant proviso that DFGP does not make any prior assumption about functional form or the time-span from which forecasts are produced.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.tandfonline.com/doi/abs/10.1080/10242690701455508
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Defence and Peace Economics.

Volume (Year): 18 (2007)
Issue (Month): 5 ()
Pages: 451-466

as
in new window

Handle: RePEc:taf:defpea:v:18:y:2007:i:5:p:451-466
DOI: 10.1080/10242690701455508
Contact details of provider: Web page: http://www.tandfonline.com/GDPE20

Order Information: Web: http://www.tandfonline.com/pricing/journal/GDPE20

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:defpea:v:18:y:2007:i:5:p:451-466. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.