IDEAS home Printed from
   My bibliography  Save this article

Methods for Analysis of Spatio-Temporal Bluetooth Tracking Data


  • Thomas Liebig
  • Gennady Andrienko
  • Natalia Andrienko


Analysis of people's movements represented by continuous sequences of spatio-temporal data tuples have received lots of attention in recent years. The focus of those studies was mostly GPS data recorded on a constant sample rate. However, the creation of intelligent location-aware models and environments also requires reliable localization in indoor environments as well as in mixed indoor/outdoor scenarios. In these cases, signal loss makes usage of GPS infeasible; therefore other recording technologies evolved. Our approach is analysis of episodic movement data. This data contains some uncertainties among time (continuity), space (accuracy), and the number of recorded objects (coverage). Prominent examples of episodic movement data are spatio-temporal activity logs, cell-based tracking data, and billing records. To give one detailed example, Bluetooth tracking monitors the presence of mobile phones and intercoms within a sensor's footprints. Usage of multiple sensors provides flows among the sensors. Most existing data mining algorithms use interpolation and therefore are infeasible for this kind of data. For example, speed and movement direction cannot be derived directly from episodic data; trajectories may not be depicted as a continuous line; and densities cannot be computed. Still, the data hold much information on group movement. Our approach is to aggregate movement in order to overcome the uncertainties. Deriving a number of objects for the spatio-temporal compartments and transitions among them gives interesting insights on the spatio-temporal behavior of moving objects. As a next step to support analysts, we propose clustering the spatio-temporal presence and flow situations. This work focuses as well on creation of a descriptive probability model for the movement based on Spatial Bayesian Networks. We present our methods on a real world data set collected during a football game in Nîmes, France in June 2011.

Suggested Citation

  • Thomas Liebig & Gennady Andrienko & Natalia Andrienko, 2014. "Methods for Analysis of Spatio-Temporal Bluetooth Tracking Data," Journal of Urban Technology, Taylor & Francis Journals, vol. 21(2), pages 27-37, April.
  • Handle: RePEc:taf:cjutxx:v:21:y:2014:i:2:p:27-37
    DOI: 10.1080/10630732.2014.888215

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:cjutxx:v:21:y:2014:i:2:p:27-37. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.