IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v52y2020i11p1181-1199.html
   My bibliography  Save this article

Dynamic conditional score models: a review of their applications

Author

Listed:
  • Szabolcs Blazsek
  • Adrian Licht

Abstract

In this paper, applications of dynamic conditional score (DCS) models are reviewed and those models are discussed in relation to classical time series models from the literature. DCS models are robust to outliers, which improves their statistical performance compared to classical models. Three applications are presented in order to compare the statistical performances of DCS and classical models in three very different contexts: (i) The QAR (quasi-autoregressive) plus Beta-t-EGARCH (exponential autoregressive conditional heteroscedasticity) model is presented, which is a score-driven expected return plus volatility model. This model is used for daily returns on the DAX (Deutscher Aktienindex) equity index for the period of January 1988 to December 2017. (ii) The score-driven local level and seasonality plus Beta-t-EGARCH model is presented, which is used for daily AFN/USD (Afghan Afghani/United States Dollar) currency exchange rates for the period of March 2007 to July 2017. (iii) The Seasonal-t-QVAR (quasi-vector autoregressive) model is presented, which is a score-driven multivariate dynamic model of location. For this model, monthly US inflation rate and US unemployment rate are used for the period of January 1948 to December 2017. For all applications, the statistical performance of each DCS model is superior to that of a corresponding classical alternative.

Suggested Citation

  • Szabolcs Blazsek & Adrian Licht, 2020. "Dynamic conditional score models: a review of their applications," Applied Economics, Taylor & Francis Journals, vol. 52(11), pages 1181-1199, March.
  • Handle: RePEc:taf:applec:v:52:y:2020:i:11:p:1181-1199
    DOI: 10.1080/00036846.2019.1659498
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2019.1659498
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2019.1659498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Astrid Ayala & Szabolcs Blazsek & Adrian Licht, 2022. "Score-driven stochastic seasonality of the Russian rouble: an application case study for the period of 1999 to 2020," Empirical Economics, Springer, vol. 62(5), pages 2179-2203, May.
    2. Petra Tomanová & Vladimír Holý, 2021. "Clustering of arrivals in queueing systems: autoregressive conditional duration approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 859-874, September.
    3. Giuseppe Orlando & Michele Bufalo, 2021. "Empirical Evidences on the Interconnectedness between Sampling and Asset Returns’ Distributions," Risks, MDPI, vol. 9(5), pages 1-35, May.
    4. Sergio Contreras-Espinoza & Francisco Novoa-Muñoz & Szabolcs Blazsek & Pedro Vidal & Christian Caamaño-Carrillo, 2022. "COVID-19 Active Case Forecasts in Latin American Countries Using Score-Driven Models," Mathematics, MDPI, vol. 11(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:52:y:2020:i:11:p:1181-1199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.