IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

A nonlinear approach to testing the unit root null hypothesis: an application to international health expenditures

  • Paresh Kumar Narayan
  • Stephan Popp

In this article, we examine the unit root null hypothesis for per capita total Health Expenditures (HEs), per capita private HEs and per capita public HEs for 29 Organization for Economic Co-operation and Development (OECD) countries. The novelty of our work is that we use a new nonlinear unit root test that allows for one structural break in the data series. We find that for around 45% of the countries, we are able to reject the unit root hypothesis for each of the three HE series. Moreover, using Monte Carlo simulations, we show that our proposed unit root model has better size and power properties than the widely used Augmented Dickey--Fuller (ADF) and Lagrange Multiplier (LM) type tests.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Applied Economics.

Volume (Year): 44 (2012)
Issue (Month): 2 (January)
Pages: 163-175

in new window

Handle: RePEc:taf:applec:44:y:2012:i:2:p:163-175
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:applec:44:y:2012:i:2:p:163-175. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.