IDEAS home Printed from
   My bibliography  Save this article

On the Approximation of the SABR Model: A Probabilistic Approach


  • Joanne E. Kennedy
  • Subhankar Mitra
  • Duy Pham


In this article, we derive a probabilistic approximation for three different versions of the SABR model: Normal, Log-Normal and a displaced diffusion version for the general case. Specifically, we focus on capturing the terminal distribution of the underlying process (conditional on the terminal volatility) to arrive at the implied volatilities of the corresponding European options for all strikes and maturities. Our resulting method allows us to work with a variety of parameters that cover the long-dated options and highly stress market condition. This is a different feature from other current approaches that rely on the assumption of very small total volatility and usually fail for longer than 10 years maturity or large volatility of volatility (Volvol).

Suggested Citation

  • Joanne E. Kennedy & Subhankar Mitra & Duy Pham, 2012. "On the Approximation of the SABR Model: A Probabilistic Approach," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(6), pages 553-586, December.
  • Handle: RePEc:taf:apmtfi:v:19:y:2012:i:6:p:553-586
    DOI: 10.1080/1350486X.2011.646523

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:19:y:2012:i:6:p:553-586. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.