IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

New Analytic Approach to Address Put--Call Parity Violation due to Discrete Dividends

Listed author(s):
  • Alexander Buryak
  • Ivan Guo
Registered author(s):

    The issue of developing simple Black--Scholes (BS)-type approximations for pricing European options with large discrete dividends was popular since the early 2000s with a few different approaches reported during the last 10 years. Moreover, it has been claimed that at least some of the resulting expressions represent high-quality approximations which closely match the results obtained by the use of numerics. In this article we review, on the one hand, these previously suggested BS-type approximations and, on the other hand, different versions of the corresponding Crank--Nicolson (CN) numerical schemes with a primary focus on their boundary condition variations. Unexpectedly we often observe substantial deviations between the analytical and numerical results which may be especially pronounced for European puts. Moreover, our analysis demonstrates that any BS-type approximation which adjusts put parameters identically to call parameters has an inherent problem of failing to detect a little known put--call parity violation phenomenon. To address this issue, we derive a new analytic pricing approximation which is in better agreement with the corresponding numerical results in comparison with any of the previously known analytic approaches for European calls and puts with large discrete dividends.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Applied Mathematical Finance.

    Volume (Year): 19 (2012)
    Issue (Month): 1 (May)
    Pages: 37-58

    in new window

    Handle: RePEc:taf:apmtfi:v:19:y:2012:i:1:p:37-58
    DOI: 10.1080/1350486X.2011.591163
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:19:y:2012:i:1:p:37-58. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.