IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Approximate Hedging of Contingent Claims under Transaction Costs for General Pay-offs

Listed author(s):
  • Emmanuel Denis

In 1985 Leland suggested an approach to price contingent claims under proportional transaction costs. Its main idea is to use the classical Black-Scholes formula with a suitably enlarged volatility for a periodically revised portfolio whose terminal value approximates the pay-off h(S T) = (S T - K)+ of the call option. In subsequent studies, Lott, Kabanov and Safarian, and Gamys and Kabanov provided a rigorous mathematical analysis and established that the hedging portfolio approximates this pay-off in the case where the transaction costs decrease to zero as the number of revisions tends to infinity. The arguments used heavily the explicit expressions given by the Black-Scholes formula leaving open the problem whether the Leland approach holds for more general options and other types of price processes. In this paper we show that for a large class of the pay-off functions Leland's method can be successfully applied. On the other hand, if the pay-off function h(x) is not convex, then this method does not work.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Applied Mathematical Finance.

Volume (Year): 17 (2010)
Issue (Month): 6 ()
Pages: 491-518

in new window

Handle: RePEc:taf:apmtfi:v:17:y:2010:i:6:p:491-518
DOI: 10.1080/13504861003590170
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:17:y:2010:i:6:p:491-518. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.