IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v39y2025i8d10.1007_s11269-025-04127-4.html
   My bibliography  Save this article

Optimising from the Ground-Up: Spatio-temporal Leakage Modelling for Optimal Pressure Management in Water Distribution Systems

Author

Listed:
  • Natalia Persefoni Chela

    (School of Civil Engineering, National Technical University of Athens (NTUA))

  • Georgios Moraitis

    (School of Civil Engineering, National Technical University of Athens (NTUA))

  • Christos Makropoulos

    (School of Civil Engineering, National Technical University of Athens (NTUA))

Abstract

Managing Non-Revenue Water (NRW) and especially leakage reduction in water distribution networks is a critical challenge for water companies worldwide. Pressure management is widely accepted as an efficient, cost-effective and quickly applicable method for leakage reduction, which also supports the reduction of asset fatigue and subsequent failures. However, an important challenge in the design and evaluation of pressure management strategies is the realistic spatio-temporal distribution, and modelling of leakages which accounts for the association between leakages and pipe characteristics, such as material, age etc., as well as operational conditions. This work demonstrates a bottom-up approach for the realistic modelling of leakages and the exploration of optimal pressure management settings to achieve leakage reduction, while meeting regulatory requirements and maintaining the expected levels of service. In the first step a methodology for leakage modelling and spatial distribution is incorporated that models leakage at pipe level separately than consumption through fictional nodes and directly associates leakages with the pipes’ physical and operational characteristics along with the creation of network-specific nomograms for different leakage rates, offering insight on the pattern of systemic-specific background leakage parameters. Subsequently, the pressure management scheme explores optimal solutions by utilising existing infrastructures and avoiding the cost of new installments, while preserving satisfactory supply services. A case study demo network called KY11 is used to demonstrate the application of this framework, though it is applicable to any network with known losses. Two optimisation scenarios are explored, one assuming all system PRVs are of fixed setting and one with PRVs of time modulated setting. In both scenarios total volume of leakages is reduced by approximately 11%, however differences in spatial distribution of leakage reduction and the network’s operation are noticed. This coupled approach offers an adaptable tool for cost-free leakage reduction, allowing for spatially targeted leakage reduction interventions under current or future system configurations.

Suggested Citation

  • Natalia Persefoni Chela & Georgios Moraitis & Christos Makropoulos, 2025. "Optimising from the Ground-Up: Spatio-temporal Leakage Modelling for Optimal Pressure Management in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(8), pages 3729-3744, June.
  • Handle: RePEc:spr:waterr:v:39:y:2025:i:8:d:10.1007_s11269-025-04127-4
    DOI: 10.1007/s11269-025-04127-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-025-04127-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-025-04127-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Chunyang He & Zhifeng Liu & Jianguo Wu & Xinhao Pan & Zihang Fang & Jingwei Li & Brett A. Bryan, 2021. "Future global urban water scarcity and potential solutions," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Pham Duc Dai, 2023. "A Real Time Optimization Based Sequential Convex Program for Pressure Management in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4751-4768, September.
    3. L. Araujo & H. Ramos & S. Coelho, 2006. "Pressure Control for Leakage Minimisation in Water Distribution Systems Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(1), pages 133-149, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Pirard & Vasileios Kitsikoudis & Sebastien Erpicum & Michel Pirotton & Pierre Archambeau & Benjamin Dewals, 2022. "Discharge Redistribution as a Key Process for Heuristic Optimization of Energy Production with Pumps as Turbines in a Water Distribution Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1237-1250, March.
    2. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    3. Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    4. Flores, Francisco & Feijoo, Felipe & DeStephano, Paelina & Herc, Luka & Pfeifer, Antun & Duić, Neven, 2024. "Assessment of the impacts of renewable energy variability in long-term decarbonization strategies," Applied Energy, Elsevier, vol. 368(C).
    5. Aditya Gupta & K. D. Kulat, 2018. "A Selective Literature Review on Leak Management Techniques for Water Distribution System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3247-3269, August.
    6. Sinagra, Marco & Aricò, Costanza & Tucciarelli, Tullio & Morreale, Gabriele, 2020. "Experimental and numerical analysis of a backpressure Banki inline turbine for pressure regulation and energy production," Renewable Energy, Elsevier, vol. 149(C), pages 980-986.
    7. Liu, Mengyu & Zhou, Xiong & Huang, Guohe & Li, Yongping, 2024. "The increasing water stress projected for China could shift the agriculture and manufacturing industry geographically," LSE Research Online Documents on Economics 124431, London School of Economics and Political Science, LSE Library.
    8. Aditya Gupta & Neeraj Bokde & Kishore Kulat & Zaher Mundher Yaseen, 2020. "Nodal Matrix Analysis for Optimal Pressure-Reducing Valve Localization in a Water Distribution System," Energies, MDPI, vol. 13(8), pages 1-17, April.
    9. Qiang Xu & Qiuwen Chen & Jinfeng Ma & Koen Blanckaert & Zhonghua Wan, 2014. "Water Saving and Energy Reduction through Pressure Management in Urban Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3715-3726, September.
    10. Filippo Pecci & Edo Abraham & Ivan Stoianov, 2017. "Penalty and relaxation methods for the optimal placement and operation of control valves in water supply networks," Computational Optimization and Applications, Springer, vol. 67(1), pages 201-223, May.
    11. A. L. Hamilton & P. M. Reed & R. S. Gupta & H. B. Zeff & G. W. Characklis, 2024. "Resilient water infrastructure partnerships in institutionally complex systems face challenging supply and financial risk tradeoffs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. D. Mora-Melia & P. Iglesias-Rey & F. Martinez-Solano & P. Ballesteros-Pérez, 2015. "Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4817-4831, October.
    13. Tang, Darrell W.S. & Bartholomeus, Ruud P. & Ritsema, Coen J., 2024. "Wastewater irrigation beneath the water table: analytical model of crop contamination risks," Agricultural Water Management, Elsevier, vol. 298(C).
    14. Irene Samora & Mário Franca & Anton Schleiss & Helena Ramos, 2016. "Simulated Annealing in Optimization of Energy Production in a Water Supply Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1533-1547, March.
    15. Beiying Li & Conghe Liu & Jingjing Bai & Yikun Huang & Run Su & Yan Wei & Bin Ma, 2024. "Strategy to mitigate substrate inhibition in wastewater treatment systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Marco Ferrante & Bruno Brunone & Silvia Meniconi & Bryan Karney & Christian Massari, 2014. "Leak Size, Detectability and Test Conditions in Pressurized Pipe Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4583-4598, October.
    17. Shan, He & Poredoš, Primož & Zou, Hao & Lv, Haotian & Wang, Ruzhu, 2023. "Perspectives for urban microenvironment sustainability enabled by decentralized water-energy-food harvesting," Energy, Elsevier, vol. 282(C).
    18. Pham Duc Dai, 2023. "A Real Time Optimization Based Sequential Convex Program for Pressure Management in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4751-4768, September.
    19. Yang, Chuanjun & Li, Zhongsheng & Li, Shiting & Cui, Xin & Chen, Qian, 2025. "Sustainable evaporative cooling driven by saline water sources: opportunities, challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 218(C).
    20. Deyou Yu & Licong Xu & Kaixing Fu & Xia Liu & Shanli Wang & Minghua Wu & Wangyang Lu & Chunyu Lv & Jinming Luo, 2024. "Electronic structure modulation of iron sites with fluorine coordination enables ultra-effective H2O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:39:y:2025:i:8:d:10.1007_s11269-025-04127-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.