IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i8d10.1007_s11269-024-03798-9.html
   My bibliography  Save this article

Application of Machine Learning Approaches in Particle Tracking Model to Estimate Sediment Transport in Natural Streams

Author

Listed:
  • Saman Baharvand

    (The University of Texas at Arlington)

  • Habib Ahmari

    (The University of Texas at Arlington)

Abstract

Numerous empirical equations and machine learning (ML) techniques have emerged to forecast dispersion coefficients in open channels. However, the efficacy of certain learning-based models in predicting these coefficients remains unstudied. Also, the direct application of machine learning-derived dispersion coefficients to Lagrangian sediment transport models has not been investigated. The present study utilizes data from prior research to assess the performance of ensemble ML-based models, specifically, random forest regression (RFR) and gradient boosting regression (GBR) inn estimating longitudinal and transverse dispersion in natural streams. The optimal hyper-parameters of these ensemble models were fine-tuned using grid-search cross-validation. The ML-based dispersion models were then integrated into a Lagrangian particle tracking model (PTM) to simulate suspended sediment concentration in natural streams. Suspended sediment concentration distribution maps generated from developed PTM with ML-based dispersion coefficients were compared with field data. The findings indicated that the GBR model, with a coefficient of determination (R2) of 0.95, outperformed the RFR model, which had an R2 of 0.9, in predicting longitudinal dispersion coefficients in a natural stream across both training and testing stages. However, during the testing phase, the RFR model with an R2 of 0.94 performed better than the GBR model with an R2 of 0.91 in predicting transverse dispersion. Both models consistently underestimated dispersion coefficients in both training and testing stages. Comparisons between the PTM with ensemble dispersion coefficients and empirical-based dispersion relationships revealed the superior performance of the GBR model compared to the other two methods.

Suggested Citation

  • Saman Baharvand & Habib Ahmari, 2024. "Application of Machine Learning Approaches in Particle Tracking Model to Estimate Sediment Transport in Natural Streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(8), pages 2905-2934, June.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:8:d:10.1007_s11269-024-03798-9
    DOI: 10.1007/s11269-024-03798-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03798-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03798-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hazi Azamathulla & Aminuddin Ghani, 2011. "Genetic Programming for Predicting Longitudinal Dispersion Coefficients in Streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1537-1544, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omid Bozorg-Haddad & Mohammad Delpasand & Sarvin ZamanZad-Ghavidel & Xuefeng Chu, 2024. "Developing a novel social–water capital index by gene expression programming," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 28187-28217, November.
    2. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    3. H. Azamathulla & Robert Jarrett, 2013. "Use of Gene-Expression Programming to Estimate Manning’s Roughness Coefficient for High Gradient Streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 715-729, February.
    4. Mohamad Javad Alizadeh & Davoud Ahmadyar & Ali Afghantoloee, 2017. "Improvement on the Existing Equations for Predicting Longitudinal Dispersion Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1777-1794, April.
    5. Amir Hamzeh Haghiabi, 2017. "Modeling River Mixing Mechanism Using Data Driven Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 811-824, February.
    6. Majid Niazkar & Nasser Talebbeydokhti & Seied Hosein Afzali, 2019. "Novel Grain and Form Roughness Estimator Scheme Incorporating Artificial Intelligence Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 757-773, January.
    7. Mohammad Aghababaei & Amir Etemad-Shahidi & Ebrahim Jabbari & Milad Taghipour, 2017. "Estimation of Transverse Mixing Coefficient in Straight and Meandering Streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3809-3827, September.
    8. J Sreekanth & Bithin Datta, 2014. "Stochastic and Robust Multi-Objective Optimal Management of Pumping from Coastal Aquifers Under Parameter Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 2005-2019, May.
    9. Ahmad Attari Ghomi & Ayyub Ansarinejad & Hamid Razaghi & Davood Hafezi & Morteza Barazande, 2014. "A Novel Electric Power Plants Performance Assessment Technique Based on Genetic Programming Approach," Modern Applied Science, Canadian Center of Science and Education, vol. 8(3), pages 1-43, June.
    10. E. Fallah-Mehdipour & O. Bozorg Haddad & H. Orouji & M. Mariño, 2013. "Application of Genetic Programming in Stage Hydrograph Routing of Open Channels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3261-3272, July.
    11. Bulent Tutmez & Mehmet Yuceer, 2013. "Regression Kriging Analysis for Longitudinal Dispersion Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3307-3318, July.
    12. Saif Said & Shadab Ali Khan, 2021. "Remote sensing-based water quality index estimation using data-driven approaches: a case study of the Kali River in Uttar Pradesh, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18252-18277, December.
    13. Yangyu Deng & Yakun Liu & Di Zhang & Ze Cao, 2025. "A Hybrid Gradient Boosting Model for Predicting Longitudinal Dispersion Coefficient in Natural Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(5), pages 2111-2131, March.
    14. E. Fallah-Mehdipour & O. Bozorg Haddad & M. Mariño, 2012. "Real-Time Operation of Reservoir System by Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4091-4103, November.
    15. Neslihan Seckin & Aytac Guven, 2012. "Estimation of Peak Flood Discharges at Ungauged Sites Across Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2569-2581, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:8:d:10.1007_s11269-024-03798-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.