IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i2d10.1007_s11269-023-03679-7.html
   My bibliography  Save this article

Assessing the Effect of Future Climate Change on Drought Characteristics and Propagation from Meteorological to Hydrological Droughts—A Comparison of Three Indices

Author

Listed:
  • Kashish Sadhwani

    (Indian Institute of Technology Bombay)

  • T. I. Eldho

    (Indian Institute of Technology Bombay
    Indian Institute of Technology Bombay)

Abstract

This study delves into the potential impacts of climate change on meteorological and hydrological droughts in the Western Ghats region of South India, a large and humid tropical region. Utilizing three drought indices—the Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), and Standardized Runoff Index (SRI), we assessed the historical drought patterns and projected future scenarios under different Representative Concentration Pathway (RCP) scenarios (4.5 and 8.5). This comprehensive analysis encompassed three future time segments (near: 2021–2040, mid: 2041–2070, far: 2071–2100) and compared results with a base period (1989–2018). The study demonstrated that drought propagation is notably faster (around 3 months) in wet, humid tropical regions, highlighting the urgency of understanding its dynamics. Furthermore, the findings indicate that droughts are expected to increase in count and severity (> 100%) in the Western Ghats in future, accompanied by an accelerated propagation rate (around 2 months), with recovery rates for hydrological droughts being notably swift in this region. The study emphasizes the significant influence of regional conditions on drought propagation, leading to variations in its characteristics. Additionally, it underscores the potential of Pearson correlation analysis in providing approximate results for estimating drought propagation periods in the wet, humid tropical regions. These findings are significant in formulating effective risk mitigation and adaptation strategies to address the mounting challenges posed by drought in this region.

Suggested Citation

  • Kashish Sadhwani & T. I. Eldho, 2024. "Assessing the Effect of Future Climate Change on Drought Characteristics and Propagation from Meteorological to Hydrological Droughts—A Comparison of Three Indices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(2), pages 441-462, January.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:2:d:10.1007_s11269-023-03679-7
    DOI: 10.1007/s11269-023-03679-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03679-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03679-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srimanta Ghosh & K. Srinivasan, 2016. "Analysis of Spatio-temporal Characteristics and Regional Frequency of Droughts in the Southern Peninsula of India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3879-3898, September.
    2. Gauranshi Raj Singh & Manoj Kumar Jain & Vivek Gupta, 2019. "Spatiotemporal assessment of drought hazard, vulnerability and risk in the Krishna River basin, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 611-635, November.
    3. Muh Taufik & Paul J. J. F. Torfs & Remko Uijlenhoet & Philip D. Jones & Daniel Murdiyarso & Henny A. J. Van Lanen, 2017. "Amplification of wildfire area burnt by hydrological drought in the humid tropics," Nature Climate Change, Nature, vol. 7(6), pages 428-431, June.
    4. Dan Li & Bingjun Liu & Changqing Ye, 2022. "Meteorological and hydrological drought risks under changing environment on the Wanquan River Basin, Southern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2941-2967, December.
    5. U. Surendran & B. Anagha & P. Raja & V. Kumar & K. Rajan & M. Jayakumar, 2019. "Analysis of Drought from Humid, Semi-Arid and Arid Regions of India Using DrinC Model with Different Drought Indices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1521-1540, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdol Rassoul Zarei & Mohammad Reza Mahmoudi, 2022. "Assessing and Predicting the Vulnerability to Agrometeorological Drought Using the Fuzzy-AHP and Second-order Markov Chain techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4403-4424, September.
    2. Divya Saini & Omvir Singh & Tejpal Sharma & Pankaj Bhardwaj, 2022. "Geoinformatics and analytic hierarchy process based drought vulnerability assessment over a dryland ecosystem of north-western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1427-1454, November.
    3. Abdol Rassoul Zarei & Mohammad Reza Mahmoudi, 2020. "Ability Assessment of the Stationary and Cyclostationary Time Series Models to Predict Drought Indices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 5009-5029, December.
    4. Emre Topçu, 2022. "Appraisal of seasonal drought characteristics in Turkey during 1925–2016 with the standardized precipitation index and copula approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 697-723, May.
    5. Farshad Ahmadi & Saeid Mehdizadeh & Babak Mohammadi, 2021. "Development of Bio-Inspired- and Wavelet-Based Hybrid Models for Reconnaissance Drought Index Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4127-4147, September.
    6. Michael Nones & Hossein Hamidifar & Seyed Mohammad Bagher Shahabi-Haghighi, 2024. "Exploring EM-DAT for depicting spatiotemporal trends of drought and wildfires and their connections with anthropogenic pressure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(1), pages 957-973, January.
    7. U. Surendran & C. M. Sushanth & E. J. Joseph & Nadhir Al-Ansari & Zaher Mundher Yaseen, 2019. "FAO CROPWAT Model-Based Irrigation Requirements for Coconut to Improve Crop and Water Productivity in Kerala, India," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    8. Ji Eun Kim & Jisoo Yu & Jae-Hee Ryu & Joo-Heon Lee & Tae-Woong Kim, 2021. "Assessment of regional drought vulnerability and risk using principal component analysis and a Gaussian mixture model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 707-724, October.
    9. Ming Li & Fuqiang Cao & Guiwen Wang & Xurong Chai & Lianzhi Zhang, 2020. "Evolutional Characteristics of Regional Meteorological Drought and Their Linkages with Southern Oscillation Index across the Loess Plateau of China during 1962–2017," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    10. Kiyoumars Roushangar & Roghayeh Ghasempour & Vahid Nourani, 2022. "Spatiotemporal Analysis of Droughts Over Different Climate Regions Using Hybrid Clustering Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 473-488, January.
    11. Nadjib Haied & Atif Foufou & Samira Khadri & Adel Boussaid & Mohamed Azlaoui & Nabil Bougherira, 2023. "Spatial and Temporal Assessment of Drought Hazard, Vulnerability and Risk in Three Different Climatic Zones in Algeria Using Two Commonly Used Meteorological Indices," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
    12. Arnold R. Salvacion, 2023. "Delineating village-level drought risk in Marinduque Island, Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2993-3014, April.
    13. Yuli Suharnoto & Muh. Taufik & Budi Indra Setiawan & Damayanti Buchori & Bonie Dewantara, 2022. "Development of Spatial Peatland Fire Danger Index Using Coupled SWAT-MODFLOW Model," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    14. Roghayeh Ghasempour & Mohammad Taghi Aalami & Kiyoumars Roushangar, 2022. "Drought Vulnerability Assessment Based on a Multi-criteria Integrated Approach and Application of Satellite-based Datasets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3839-3858, August.
    15. Ioannis M. Kourtis & Harris Vangelis & Dimitris Tigkas & Anna Mamara & Ioannis Nalbantis & George Tsakiris & Vassilios A. Tsihrintzis, 2023. "Drought Assessment in Greece Using SPI and ERA5 Climate Reanalysis Data," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    16. Shyamsundar, Priya & Sauls, Laura Aileen & Cheek, Jennifer Zavaleta & Sullivan-Wiley, Kira & Erbaugh, J.T. & Krishnapriya, P.P., 2021. "Global forces of change: Implications for forest-poverty dynamics," Forest Policy and Economics, Elsevier, vol. 133(C).
    17. Rahul S. Todmal, 2024. "Intensity, frequency and coverage of hydro-meteorological droughts and agriculture in the semi-arid basins of Maharashtra (India)," Climatic Change, Springer, vol. 177(9), pages 1-24, September.
    18. Suwarno, Aritta & Hein, Lars & Weikard, Hans-Peter & van Noordwijk, Meine & Nugroho, Bayu, 2018. "Land-use trade-offs in the Kapuas peat forest, Central Kalimantan, Indonesia," Land Use Policy, Elsevier, vol. 75(C), pages 340-351.
    19. Ashley E. Beusekom & William A. Gould & A. Carolina Monmany & Azad Henareh Khalyani & Maya Quiñones & Stephen J. Fain & Maria José Andrade-Núñez & Grizelle González, 2018. "Fire weather and likelihood: characterizing climate space for fire occurrence and extent in Puerto Rico," Climatic Change, Springer, vol. 146(1), pages 117-131, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:2:d:10.1007_s11269-023-03679-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.