IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i3d10.1007_s11269-020-02760-9.html
   My bibliography  Save this article

Offline Optimization of Sluice Control Rules in the Urban Water System for Flooding Mitigation

Author

Listed:
  • Xuan Wang

    (Tongji University)

  • Wenchong Tian

    (Tongji University)

  • Zhenliang Liao

    (Tongji University
    Xinjiang University)

Abstract

A real-time control (RTC) system can substantially improve the efficiency in urban flooding mitigation by optimizing the capacity of drainage and storage in existing drainage systems. However, few studies have investigated the RTC for an Urban Water System (UWS) in cities with a high water surface ratio for flooding mitigation. In this study, control rules of the actuators in an UWS were developed by an offline optimization system that combines a hydraulic model, the stormwater management model (SWMM) with an optimization model solved by the differential evolution (DE) algorithm. Iteratively simulating only the downstream UWS hydraulic model, the objectives of this study were to (i) minimize the flooding volume from the UWS and (ii) minimize the cumulative water depths above the control lines in real-time. Results showed that the optimal control rules outperformed the current fully open and closed rules, indicating the UWS’s retaining and draining capacity was effectively utilized through the offline optimization. This study also found that the robust control rules might be biased and have little effect under most rainfalls, especially mild storms, as they are derived from the system’s average performance under various rainfall conditions.

Suggested Citation

  • Xuan Wang & Wenchong Tian & Zhenliang Liao, 2021. "Offline Optimization of Sluice Control Rules in the Urban Water System for Flooding Mitigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 949-962, February.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:3:d:10.1007_s11269-020-02760-9
    DOI: 10.1007/s11269-020-02760-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02760-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02760-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ji Shen & Fangbi Tan, 2020. "Effects of DEM resolution and resampling technique on building treatment for urban inundation modeling: a case study for the 2016 flooding of the HUST campus in Wuhan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 927-957, October.
    2. J. Yazdi, 2019. "Optimal Operation of Urban Storm Detention Ponds for Flood Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2109-2121, April.
    3. Iman Ahmadianfar & Omid Bozorg-Haddad & Xuefeng Chu, 2019. "Optimizing Multiple Linear Rules for Multi-Reservoir Hydropower Systems Using an Optimization Method with an Adaptation Strategy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4265-4286, September.
    4. Ayoub Tahiri & David Ladeveze & Pascale Chiron & Bernard Archimede & Ludovic Lhuissier, 2018. "Reservoir Management Using a Network Flow Optimization Model Considering Quadratic Convex Cost Functions on Arcs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3505-3518, August.
    5. Linhan Yang & Jianzhu Li & Aiqing Kang & Shuai Li & Ping Feng, 2020. "The Effect of Nonstationarity in Rainfall on Urban Flooding Based on Coupling SWMM and MIKE21," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1535-1551, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenliang Liao & Zhiyu Zhang & Wenchong Tian & Xianyong Gu & Jiaqiang Xie, 2022. "Comparison of Real-time Control Methods for CSO Reduction with Two Evaluation Indices: Computing Load Rate and Double Baseline Normalized Distance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4469-4484, September.
    2. Kun Xie & Jong-Suk Kim & Linjuan Hu & Hua Chen & Chong-Yu Xu & Jung Hwan Lee & Jie Chen & Sun-Kwon Yoon & Di Zhu & Shaobo Zhang & Yang Liu, 2023. "Intelligent Scheduling of Urban Drainage Systems: Effective Local Adaptation Strategies for Increased Climate Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 91-111, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kobra Rahmati & Parisa-Sadat Ashofteh & Hugo A. Loáiciga, 2021. "Application of the Grasshopper Optimization Algorithm (GOA) to the Optimal Operation of Hydropower Reservoir Systems Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4325-4348, October.
    2. Song-Yue Yang & Shaohua Marko Hsu & Ching Hsiao & Che-Hao Chang, 2023. "Digital elevation models for high-resolution base flood elevation mapping in a densely populated city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2693-2716, March.
    3. Donglai Li & Jingming Hou & Yangwei Zhang & Minpeng Guo & Dawei Zhang, 2022. "Influence of Time Step Synchronization on Urban Rainfall-Runoff Simulation in a Hybrid CPU/GPU 1D-2D Coupled Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3417-3433, August.
    4. Bartosz Szeląg & Roman Suligowski & Grzegorz Majewski & Przemysław Kowal & Adrian Bralewski & Karolina Bralewska & Ewa Anioł & Wioletta Rogula-Kozłowska & Francesco Paola, 2022. "Application of Multinomial Logistic Regression to Model the Impact of Rainfall Genesis on the Performance of Storm Overflows: Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3699-3714, August.
    5. Hui Zhang & Xizhong Shen & Yuan Yuan, 2023. "Flood Influence Characteristics of Rail Transit Engineering of Tunnel, Viaduct, and Roadbed through Urban Flood Detention Areas," Sustainability, MDPI, vol. 15(9), pages 1-28, April.
    6. Alan de Gois Barbosa & Alcigeimes B. Celeste & Ludmilson Abritta Mendes, 2021. "Influence of Inflow Nonstationarity on the Multipurpose Optimal Operation of Hydropower Plants Using Nonlinear Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2343-2367, June.
    7. Bartosz Szeląg & Adam Kiczko & Grzegorz Łagód & Francesco Paola, 2021. "Relationship Between Rainfall Duration and Sewer System Performance Measures Within the Context of Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5073-5087, December.
    8. Weiwei Jiang & Jingshan Yu, 2022. "Impact of rainstorm patterns on the urban flood process superimposed by flash floods and urban waterlogging based on a coupled hydrologic–hydraulic model: a case study in a coastal mountainous river b," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 301-326, May.
    9. Fatemeh Yavari & Seyyed Ali Salehi Neyshabouri & Jafar Yazdi & Amir Molajou & Adam Brysiewicz, 2022. "A Novel Framework for Urban Flood damage Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1991-2011, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:3:d:10.1007_s11269-020-02760-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.