IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i6d10.1007_s11269-019-02234-7.html
   My bibliography  Save this article

Response of Triangular-Shaped Leaky Aquifers to Rainfall-Induced Groundwater Recharge: an Analytical Study

Author

Listed:
  • Ali Mahdavi

    (Arak University)

Abstract

Different aspects of groundwater mound dynamics in triangular-shaped aquifers are investigated analytically under spatially uniform recharge of time-varying rate. The aquifer response is analyzed relying on 2-D linearized Boussinesq equation, subject to two different configurations of hydrogeological boundary conditions (constant-head streams and no-flow barrier). The aquifer is homogeneous, isotropic and rests over a horizontal, semipervious layer, through which vertical leakage can take place. Point-recharge formula (Green’s function) is first derived for the intended aquifer domain and then properly converted to accommodate the effect of rainfall-induced areal recharge. Components of groundwater budget are evaluated in terms of volumetric rates, taking into account the jointed effects of leakage, mound storage and outflow to adjacent streams. The resulting expressions are then proven to obey the expected mass balance in a rigorous mathematical fashion. Hypothetical examples illustrating main features of flow field are presented, with attention paid on groundwater equpotentials and streamlines. The computed mound profiles appear to agree well with numerical results from finite element method. Further, the most influential parameters affecting each component of groundwater budget are identified with the help of sensitivity analysis. Finally, the combined effects of a pumping well and rainfall-induced mound are discussed. The present solution may serve as a test case for verifying numerical schemes that are being developed for more comprehensive mound analysis.

Suggested Citation

  • Ali Mahdavi, 2019. "Response of Triangular-Shaped Leaky Aquifers to Rainfall-Induced Groundwater Recharge: an Analytical Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2153-2173, April.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:6:d:10.1007_s11269-019-02234-7
    DOI: 10.1007/s11269-019-02234-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02234-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02234-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali Mahdavi & Hamid Seyyedian, 2013. "Transient-State Analytical Solution for Groundwater Recharge in Triangular-Shaped Aquifers Using the Concept of Expanded Domain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2785-2806, June.
    2. Ali Mahdavi, 2015. "Transient-State Analytical Solution for Groundwater Recharge in Anisotropic Sloping Aquifer," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3735-3748, August.
    3. A. Manglik & S. Rai & V. Singh, 2013. "A Generalized Predictive Model of Water Table Fluctuations in Anisotropic Aquifer Due to Intermittently Applied Time-Varying Recharge from Multiple Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 25-36, January.
    4. A. Manglik & S. Rai, 2000. "Modeling of Water Table Fluctuations in Response to Time-varying Recharge and Withdrawal," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 14(5), pages 339-347, October.
    5. S. Rai & R. Singh, 1998. "Evolution of the Water Table in a Finite Aquifer Due to Transient Recharge from Two Parallel Strip Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 12(3), pages 199-208, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Mahdavi, 2019. "Transient-state Analytical Solution for Arbitrarily-Located Multiwells in Triangular-Shaped Unconfined Aquifer," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3615-3631, August.
    2. Masoomeh Zeinali & Arash Azari & Mohammad Mehdi Heidari, 2020. "Simulating Unsaturated Zone of Soil for Estimating the Recharge Rate and Flow Exchange Between a River and an Aquifer," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 425-443, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Mahdavi, 2015. "Transient-State Analytical Solution for Groundwater Recharge in Anisotropic Sloping Aquifer," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3735-3748, August.
    2. Iraj Saeedpanah & Ramin Golmohamadi Azar, 2017. "New Analytical Expressions for Two-Dimensional Aquifer Adjoining with Streams of Varying Water Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 403-424, January.
    3. Ali Mahdavi & Hamid Seyyedian, 2013. "Transient-State Analytical Solution for Groundwater Recharge in Triangular-Shaped Aquifers Using the Concept of Expanded Domain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2785-2806, June.
    4. A. Manglik & S. Rai & V. Singh, 2013. "A Generalized Predictive Model of Water Table Fluctuations in Anisotropic Aquifer Due to Intermittently Applied Time-Varying Recharge from Multiple Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 25-36, January.
    5. Debashish Goswami & Prasanta Kalita & Edward Mehnert, 2010. "Modeling and Simulation of Baseflow to Drainage Ditches During Low-flow Periods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 173-191, January.
    6. Ghasem Zarei & Mehdi Homaee & Abdolmajid Liaghat, 2009. "Modeling Transient Evaporation from Descending Shallow Groundwater Table Based on Brooks–Corey Retention Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2867-2876, November.
    7. Rajeev Bansal & Samir Das, 2011. "Response of an Unconfined Sloping Aquifer to Constant Recharge and Seepage from the Stream of Varying Water Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 893-911, February.
    8. Mahdi Asadi-Aghbolaghi & Gholam Reza Rakhshandehroo, 2016. "Delineating Capture Zone of a Pumping Well in a Slanting Regional Groundwater Flow to a Stream with a Leaky Layer," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4273-4291, September.
    9. Ali Mahdavi, 2019. "Transient-state Analytical Solution for Arbitrarily-Located Multiwells in Triangular-Shaped Unconfined Aquifer," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3615-3631, August.
    10. Concepcion Pla & Javier Valdes-Abellan & Antonio Jose Tenza-Abril & David Benavente, 2016. "Predicting Daily Water Table Fluctuations in Karstic Aquifers from GIS-Based Modelling, Climatic Settings and Extraction Wells," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2531-2545, May.
    11. Kudzai Chipongo & Mehdi Khiadani, 2015. "Comparison of Simulation Methods for Recharge Mounds Under Rectangular Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2855-2874, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:6:d:10.1007_s11269-019-02234-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.