IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i15d10.1007_s11269-016-1438-z.html
   My bibliography  Save this article

Design and Application of an Adaptive Time Delay Model for Flow Routing in Prismatic Trapezoidal Geometry River Reach

Author

Listed:
  • Long Duc Nguyen

    (Advanced System Technology (AST) Branch of Fraunhofer IOSB)

  • Divas Karimanzira

    (Advanced System Technology (AST) Branch of Fraunhofer IOSB)

  • Thomas Rauschenbach

    (Advanced System Technology (AST) Branch of Fraunhofer IOSB)

  • Lars Ribbe

    (Cologne University of Applied Sciences)

Abstract

Simplified flow routing model is favourably used for control-based application because it does not only present acceptable results but also is computationally inexpensive. Recently, the Time Delay model (TD) with two parameters, time constant and time delay has been developed in order to approximate the river flow in a very wide rectangular profile. This paper presents an advancement we thereafter call Adaptive Time Delay model (ATD) that expands the application scope of the TD Model by simulating the flow using a prismatic trapezoidal geometry. Firstly, the mathematical representation of the ATD model and the linearized Saint Venant model (SVE) are defined. Secondly, the transfer functions of the ATD model and the complex hydraulic model (SVE) are obtained by Laplace transformation. Finally, the Taylor expansion technique is used to find cumulants of the two transfer functions, and consequently equating the cumulants to derive time constant and time delay of the ATD model as functions of the complex hydraulic model parameters. By applying the fourth order Runge Kutta numerical scheme the flow rate and water level at downstream reach end are simulated. The innovation of this research is that both water stage and flow rate are derived through optimization. The performance of the ATD Model is also presented and compared to the TD Model in a case study. The extension of the time delay model does not only issue more accurate results but also introduces more outcomes like flow rate, and relation curves between time delay and time constant with discharge that might be useful in flood forecasting and other purposes in water resources operation.

Suggested Citation

  • Long Duc Nguyen & Divas Karimanzira & Thomas Rauschenbach & Lars Ribbe, 2016. "Design and Application of an Adaptive Time Delay Model for Flow Routing in Prismatic Trapezoidal Geometry River Reach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5687-5698, December.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:15:d:10.1007_s11269-016-1438-z
    DOI: 10.1007/s11269-016-1438-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1438-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1438-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Bhuyan & Sanjay Kumar & Joygopal Jena & P. Bhunya, 2015. "Flood Hydrograph with Synthetic Unit Hydrograph Routing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5765-5782, December.
    2. Andrea D’Aniello & Luca Cozzolino & Luigi Cimorelli & Renata Della Morte & Domenico Pianese, 2015. "A numerical model for the simulation of debris flow triggering, propagation and arrest," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1403-1433, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gokmen Tayfur & Bihrat Onoz & Antonino Cancelliere & Luis Garrote, 2016. "Editorial: Water Resources Management in a Changing World: Challenges and Opportunities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5553-5557, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weilian Li & Jun Zhu & Yunhao Zhang & Lin Fu & Yuhang Gong & Ya Hu & Yungang Cao, 2020. "An on-demand construction method of disaster scenes for multilevel users," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 409-428, March.
    2. John Reimer & Chin Wu, 2016. "Development and Application of a Nowcast and Forecast System Tool for Planning and Managing a River Chain of Lakes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1375-1393, March.
    3. John R. Reimer & Chin H. Wu, 2016. "Development and Application of a Nowcast and Forecast System Tool for Planning and Managing a River Chain of Lakes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1375-1393, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:15:d:10.1007_s11269-016-1438-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.