IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i15d10.1007_s11269-016-1410-y.html
   My bibliography  Save this article

Classification of Drainage Basins Based on Readily Available Information

Author

Listed:
  • Ino Papageorgaki

    (National Technical University of Athens)

  • Ioannis Nalbantis

    (National Technical University of Athens)

Abstract

Classification of drainage basins into groups with similar response to meteorological forcing can be very helpful in cases of transfer of hydrological information in space such as in streamflow prediction in ungauged basins. It is also critical for the implementation of the Water Framework Directive and related legislative tools of the EU such as the Flood Directive. The focus is testing the ability to classify drainage basins using climate-based variables and geomorphometric characteristics as predictors. Precipitation is selected as the climate-based variable, since this is commonly measured in the majority of basins. Geomorphometric characteristics include, among others, the average ground slope and drainage density; these are derived from a Digital Terrain Model. The employed methodology involves two steps. In the first step we perform unsupervised classification through using the fuzzy c-means method to identify basin classes that serve as the reference classes in the second step of analysis. A set of hydrological signatures is used in the first step, which includes the runoff ratio, the baseflow index, the slope of the flow duration curve, and the snow day ratio. In the second step we perform supervised classification through using the k-Nearest Neighbour method which maps predictors to basin classes. Last, the success rate of the obtained classification is assessed through using jack-knife re-sampling. Twenty-four gauged basins in mainland Greece are used, which are classified into four classes. The employed methodology proved to be successful in more than 95 % of cases of recognition of the class for an ungauged basin.

Suggested Citation

  • Ino Papageorgaki & Ioannis Nalbantis, 2016. "Classification of Drainage Basins Based on Readily Available Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5559-5574, December.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:15:d:10.1007_s11269-016-1410-y
    DOI: 10.1007/s11269-016-1410-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1410-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1410-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Habib Abida & Manel Ellouze, 2006. "Hydrological Delineation of Homogeneous Regions in Tunisia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 961-977, December.
    2. Muhammad Qamar & Daniele Ganora & Pierluigi Claps, 2015. "Monthly Runoff Regime Regionalization Through Dissimilarity-Based Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4735-4751, October.
    3. Zaw Latt & Hartmut Wittenberg & Brigitte Urban, 2015. "Clustering Hydrological Homogeneous Regions and Neural Network Based Index Flood Estimation for Ungauged Catchments: an Example of the Chindwin River in Myanmar," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 913-928, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gokmen Tayfur & Bihrat Onoz & Antonino Cancelliere & Luis Garrote, 2016. "Editorial: Water Resources Management in a Changing World: Challenges and Opportunities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5553-5557, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isabel Kaufmann Almeida & Aleska Kaufmann Almeida & Jorge Luiz Steffen & Teodorico Alves Sobrinho, 2016. "Model for Estimating the Time of Concentration in Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4083-4096, September.
    2. Muhammad Waseem & Ji-yae Shin & Tae-Woong Kim, 2015. "Comparing Spatial Interpolation Schemes for Constructing a Flow Duration Curve in an Ungauged Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2249-2265, May.
    3. Zamir Hussain, 2017. "Estimation of flood quantiles at gauged and ungauged sites of the four major rivers of Punjab, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 107-123, March.
    4. A. Agarwal & R. Maheswaran & J Kurths & R. Khosa, 2016. "Wavelet Spectrum and Self-Organizing Maps-Based Approach for Hydrologic Regionalization -a Case Study in the Western United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4399-4413, September.
    5. Hairong Zhang & Jianzhong Zhou & Lei Ye & Xiaofan Zeng & Yufan Chen, 2015. "Lower Upper Bound Estimation Method Considering Symmetry for Construction of Prediction Intervals in Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5505-5519, December.
    6. Ligia de Oliveira Serrano & Rayssa Balieiro Ribeiro & Alisson Carraro Borges & Fernando Falco Pruski, 2020. "Low-Flow Seasonality and Effects on Water Availability throughout the River Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1289-1304, March.
    7. Zamir Hussain, 2011. "Application of the Regional Flood Frequency Analysis to the Upper and Lower Basins of the Indus River, Pakistan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2797-2822, September.
    8. Muhammad Adnan Shahid & Piero Boccardo & Muhammad Usman & Adriana Albanese & Muhammad Uzair Qamar, 2017. "Predicting Peak Flows in Real Time through Event Based Hydrologic Modeling for a Trans-Boundary River Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 793-810, February.
    9. Fahimi Farzad & Ahmed H. El-Shafie, 2017. "Performance Enhancement of Rainfall Pattern – Water Level Prediction Model Utilizing Self-Organizing-Map Clustering Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 945-959, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:15:d:10.1007_s11269-016-1410-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.