IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v26y2012i2p377-390.html
   My bibliography  Save this article

Effect of Well Radius on Drawdown Solutions Obtained with Laplace Transform and Green’s Function

Author

Listed:
  • Chiu-Shia Fen
  • Hund-Der Yeh

Abstract

We have developed a drawdown solution for a partially penetrating well under constant flux pumping in a confined aquifer with finite thickness. The predictions of our solution diverge from the predictions of Hantush’s solution ( 1961 ), particularly for problems with low ratios of well screen length to aquifer thickness. Furthermore, the predicted drawdown from Hantush’s solution ( 1961 ) differs from that of Yang et al.’s solution Water Resour Res 42:W0552, ( 2006 ) only near the well and at small time values as indicated in Yang et al. Water Resour Res 42:W0552, ( 2006 ). Our solution is based on Green’s function with a columnar source (sink) that represents pumping from a finite-radius well. Hantush’s solution ( 1961 ) and Yang et al.’s solution Water Resour Res 42:W0552, ( 2006 ), however, were derived from Laplace transform techniques for pumping in a well with an infinitesimal and a finite radius, respectively. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Chiu-Shia Fen & Hund-Der Yeh, 2012. "Effect of Well Radius on Drawdown Solutions Obtained with Laplace Transform and Green’s Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 377-390, January.
  • Handle: RePEc:spr:waterr:v:26:y:2012:i:2:p:377-390
    DOI: 10.1007/s11269-011-9922-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-011-9922-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-011-9922-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajeev Bansal & Samir Das, 2011. "Response of an Unconfined Sloping Aquifer to Constant Recharge and Seepage from the Stream of Varying Water Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 893-911, February.
    2. Konstantinos Moutsopoulos & Vassilios Tsihrintzis, 2009. "Analytical Solutions and Simulation Approaches for Double Permeability Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 395-415, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iraj Saeedpanah & Ramin Golmohamadi Azar, 2017. "New Analytical Expressions for Two-Dimensional Aquifer Adjoining with Streams of Varying Water Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 403-424, January.
    2. Emin Ciftci, 2019. "A New Approach for Analyzing Drawdown Data from a Partially Penetrating Well," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2727-2739, June.
    3. Iraj Saeedpanah & Ramin Golmohamadi Azar, 2017. "New Analytical Solutions for Unsteady Flow in a Leaky Aquifer between Two Parallel Streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2315-2332, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahdi Asadi-Aghbolaghi & Gholam Reza Rakhshandehroo, 2016. "Delineating Capture Zone of a Pumping Well in a Slanting Regional Groundwater Flow to a Stream with a Leaky Layer," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4273-4291, September.
    2. S. Rai & A. Manglik, 2012. "An Analytical Solution of Boussinesq Equation to Predict Water Table Fluctuations Due to Time Varying Recharge and Withdrawal from Multiple Basins, Wells and Leakage Sites," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 243-252, January.
    3. A. Bobba, 2012. "Ground Water-Surface Water Interface (GWSWI) Modeling: Recent Advances and Future Challenges," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4105-4131, November.
    4. Iraj Saeedpanah & Ramin Golmohamadi Azar, 2017. "New Analytical Expressions for Two-Dimensional Aquifer Adjoining with Streams of Varying Water Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 403-424, January.
    5. A. Manglik & S. Rai & V. Singh, 2013. "A Generalized Predictive Model of Water Table Fluctuations in Anisotropic Aquifer Due to Intermittently Applied Time-Varying Recharge from Multiple Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 25-36, January.
    6. Iraj Saeedpanah & Ramin Golmohamadi Azar, 2017. "New Analytical Solutions for Unsteady Flow in a Leaky Aquifer between Two Parallel Streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2315-2332, May.
    7. Payam Sarkhosh & Amgad Salama & Yee-Chung Jin, 2021. "Implicit Finite-Volume Scheme to Solve Coupled Saint-Venant and Darcy–Forchheimer Equations for Modeling Flow Through Porous Structures," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4495-4517, October.
    8. L. Guneshwor & T. I. Eldho & A. Vinod Kumar, 2018. "Identification of Groundwater Contamination Sources Using Meshfree RPCM Simulation and Particle Swarm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1517-1538, March.
    9. Sylke Hilberg & Jean Schneider, 2011. "The Aquifer Characteristics of the Dolomite Formation a New Approach for Providing Drinking Water in the Northern Calcareous Alps Region in Germany and Austria," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2705-2729, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:26:y:2012:i:2:p:377-390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.