IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v24y2010i9p1763-1777.html
   My bibliography  Save this article

Assessment of Snowmelt Runoff Using Remote Sensing and Effect of Climate Change on Runoff

Author

Listed:
  • Sanjay Jain
  • Ajanta Goswami
  • Arun Saraf

Abstract

Runoff regimes in Himalayan basins are controlled mainly by melting of snow and ice cover. The air temperature is the principal variable to estimate the importance of the melting of the snow cover when using snowmelt runoff model. Changes in temperature will ultimately affect stream flow and snow/ice melt runoff in particular. Global atmospheric general circulation models (GCMs) have been developed to simulate the present climate and used to predict future climatic changes and its effect. These GCMs have certain disadvantages, therefore another simple approach of hypothetical scenarios have been developed and successfully demonstrated in this study to investigate the effect of changes in temperature. Adopted plausible climate scenarios included three temperature scenarios (T + 1, T + 2, T + 3°C). The effect of these changes has been studied on the stream flow which has contribution from snowmelt, rainfall and base flow in the Satluj basin. It was observed that with the increase in temperature there is not much change in total stream flow, but the distribution of stream flow have changed. More snowmelt runoff occurred earlier due to increased snow melting however, reduced in the monsoon months. Copyright Springer Science+Business Media B.V. 2010

Suggested Citation

  • Sanjay Jain & Ajanta Goswami & Arun Saraf, 2010. "Assessment of Snowmelt Runoff Using Remote Sensing and Effect of Climate Change on Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1763-1777, July.
  • Handle: RePEc:spr:waterr:v:24:y:2010:i:9:p:1763-1777
    DOI: 10.1007/s11269-009-9523-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-009-9523-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-009-9523-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manohar Arora & Pratap Singh & N. Goel & R. Singh, 2008. "Climate Variability Influences on Hydrological Responses of a Large Himalayan Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1461-1475, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingyong Cai & Shengtian Yang & Hongjuan Zeng & Changsen Zhao & Shudong Wang, 2014. "A Distributed Hydrological Model Driven by Multi-Source Spatial Data and Its Application in the Ili River Basin of Central Asia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2851-2866, August.
    2. Riyaz Mir & Sanjay Jain & Arun Saraf, 2015. "Analysis of current trends in climatic parameters and its effect on discharge of Satluj River basin, western Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 587-619, October.
    3. Deepak Srivastava & Amit Kumar & Akshaya Verma & Siddharth Swaroop, 2014. "Analysis of Climate and Melt-runoff in Dunagiri Glacier of Garhwal Himalaya (India)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3035-3055, August.
    4. Rajesh Kumar & Shaktiman Singh & Ramesh Kumar & Atar Singh & Anshuman Bhardwaj & Lydia Sam & Surjeet Singh Randhawa & Akhilesh Gupta, 2016. "Development of a Glacio-hydrological Model for Discharge and Mass Balance Reconstruction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3475-3492, August.
    5. Yongchao Duan & Min Luo & Xiufeng Guo & Peng Cai & Fu Li, 2021. "Study on the Relationship between Snowmelt Runoff for Different Latitudes and Vegetation Growth Based on an Improved SWAT Model in Xinjiang, China," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    6. Haoyu Jin & Qin Ju & Zhongbo Yu & Jie Hao & Huanghe Gu & Henan Gu & Wei Li, 2019. "Simulation of snowmelt runoff and sensitivity analysis in the Nyang River Basin, southeastern Qinghai-Tibetan Plateau, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 931-950, November.
    7. Anand Verdhen & Bhagu Chahar & Om Sharma, 2014. "Snowmelt Modelling Approaches in Watershed Models: Computation and Comparison of Efficiencies under Varying Climatic Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3439-3453, September.
    8. Manish Goyal & Vishal Singh & Akshay Meena, 2015. "Geospatial and hydrological modeling to assess hydropower potential zones and site location over rainfall dependent Inland catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2875-2894, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    2. Rajesh Kumar & Shaktiman Singh & Ramesh Kumar & Atar Singh & Anshuman Bhardwaj & Lydia Sam & Surjeet Singh Randhawa & Akhilesh Gupta, 2016. "Development of a Glacio-hydrological Model for Discharge and Mass Balance Reconstruction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3475-3492, August.
    3. Bekele Debele & Raghavan Srinivasan & A. Gosain, 2010. "Comparison of Process-Based and Temperature-Index Snowmelt Modeling in SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1065-1088, April.
    4. Anand Verdhen & Bhagu Chahar & Om Sharma, 2014. "Snowmelt Modelling Approaches in Watershed Models: Computation and Comparison of Efficiencies under Varying Climatic Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3439-3453, September.
    5. Deepak Srivastava & Amit Kumar & Akshaya Verma & Siddharth Swaroop, 2014. "Analysis of Climate and Melt-runoff in Dunagiri Glacier of Garhwal Himalaya (India)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3035-3055, August.
    6. Adlul Islam & Alok Sikka & B. Saha & Anamika Singh, 2012. "Streamflow Response to Climate Change in the Brahmani River Basin, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1409-1424, April.
    7. Marco Masetti & Guglielmina Diolaiuti & Carlo D’Agata & Claudio Smiraglia, 2010. "Hydrological Characterization of an Ice-Contact Lake: Miage Lake (Monte Bianco, Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1677-1696, June.

    More about this item

    Keywords

    Runoff; Himalaya; Snow; Snowmelt; Climate; GCM;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:24:y:2010:i:9:p:1763-1777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.