IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v23y2009i1p117-136.html
   My bibliography  Save this article

Evolving Effective Hydraulic Model for Municipal Water Systems

Author

Listed:
  • Zheng Wu
  • Christopher Clark

Abstract

Constructing a robust hydraulic network model is vitally important, but a time-consuming task. Over last two decades, several approaches using optimization techniques have been developed for identifying model parameters. Although most of the methods can make the model agree with field observations, few are able to achieve a good level of accuracy in terms of determining the correct model parameters for a water distribution system. The previously developed methods appear to be lacking versatility for users to specify calibration tasks given real data for a real system. This paper proposes a comprehensive framework for evolving a hydraulic network model. Calibration tasks can be specified according to data availability and model application requirements. It allows an engineer to (1) flexibly choose any combination of the model parameters such as pipe roughness, junction demand and link (pipes, valves and pumps) operational status; (2) easily aggregate model parameters to reduce the problem dimension for expeditious calculation and (3) consistently specify boundary conditions and junction demand loadings that are corresponding to field data collection. A model calibration is then defined as an implicit nonlinear optimization problem, which is solved by employing a competent evolutionary algorithm. With this methodology, a modeler can be fully assisted to carry out not only a single parameter optimization run, but also a variety of calibration tasks in a progressive manner according to practical system conditions, thus it is possible to achieve a good model calibration with high level of confidence. The method has been applied to the model of a municipal water system to demonstrate the efficacy and robustness of the evolutionary modeling practices. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Zheng Wu & Christopher Clark, 2009. "Evolving Effective Hydraulic Model for Municipal Water Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(1), pages 117-136, January.
  • Handle: RePEc:spr:waterr:v:23:y:2009:i:1:p:117-136
    DOI: 10.1007/s11269-008-9267-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-008-9267-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-008-9267-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarai Díaz & Roberto Mínguez & Javier González, 2017. "Calibration via Multi-period State Estimation in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4801-4819, December.
    2. Cristiana Bragalli & Matteo Fortini & Ezio Todini, 2016. "Enhancing Knowledge in Water Distribution Networks via Data Assimilation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3689-3706, September.
    3. Andrea Menapace & Diego Avesani, 2019. "Global Gradient Algorithm Extension to Distributed Pressure Driven Pipe Demand Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1717-1736, March.
    4. Mehdi Dini & Massoud Tabesh, 2014. "A New Method for Simultaneous Calibration of Demand Pattern and Hazen-Williams Coefficients in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 2021-2034, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:23:y:2009:i:1:p:117-136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.