IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v22y2008i11p1625-1647.html
   My bibliography  Save this article

Multireservoir Flood-Control Optimization with Neural-Based Linear Channel Level Routing Under Tidal Effects

Author

Listed:
  • Chih-Chiang Wei
  • Nien-Sheng Hsu

Abstract

In order to determine the optimal hourly releases from reservoirs under the estuary tidal effects during typhoon periods, this paper develops a generalized multipurpose multireservoir optimization model for basin-scale flood control. The model objectives include: preventing the reservoir dam and the downstream river embankment from overtopping, and meeting reservoir target storage at the end of flood. The model constraints include the reservoir operations and the neural-based linear channel level routing. The proposed channel level routing developed from the feed-forward back-propagation neural network is employed to estimate the downstream water levels. The developed optimization model has been applied to the Tanshui River Basin system in Taiwan. The results obtained by the optimization model, in contrast to historical records, demonstrate successfully the practicability in solving the problem of flood control operations. Copyright Springer Science+Business Media B.V. 2008

Suggested Citation

  • Chih-Chiang Wei & Nien-Sheng Hsu, 2008. "Multireservoir Flood-Control Optimization with Neural-Based Linear Channel Level Routing Under Tidal Effects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(11), pages 1625-1647, November.
  • Handle: RePEc:spr:waterr:v:22:y:2008:i:11:p:1625-1647
    DOI: 10.1007/s11269-008-9246-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-008-9246-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-008-9246-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ozgur Kisi, 2011. "Wavelet Regression Model as an Alternative to Neural Networks for River Stage Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 579-600, January.
    2. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2016. "Rainfall-Runoff Prediction Using Dynamic Typhoon Information and Surface Weather Characteristic Considering Monsoon Effects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 877-895, January.
    3. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2014. "Two-Stage Pumping Control Model for Flood Mitigation in Inundated Urban Drainage Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 425-444, January.
    4. Panagiotis Angelidis & Michalis Kotsikas & Nikos Kotsovinos, 2010. "Management of Upstream Dams and Flood Protection of the Transboundary River Evros/Maritza," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2467-2484, September.
    5. J. Yazdi & S. Salehi Neyshabouri, 2012. "Optimal design of flood-control multi-reservoir system on a watershed scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 629-646, September.
    6. Hui Qin & Jianzhong Zhou & Youlin Lu & Yinghai Li & Yongchuan Zhang, 2010. "Multi-objective Cultured Differential Evolution for Generating Optimal Trade-offs in Reservoir Flood Control Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2611-2632, September.
    7. Xiang Fu & An-Qiang Li & Hui Wang, 2014. "Allocation of Flood Control Capacity for a Multireservoir System Located at the Yangtze River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4823-4834, October.
    8. Chih-Chiang Wei, 2017. "Predictions of Surface Solar Radiation on Tilted Solar Panels using Machine Learning Models: A Case Study of Tainan City, Taiwan," Energies, MDPI, vol. 10(10), pages 1-26, October.
    9. X. Wang & R. Zhao & Y. Hao, 2011. "Flood Control Operations Based on the Theory of Variable Fuzzy Sets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 777-792, February.
    10. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2016. "Rainfall-Runoff Prediction Using Dynamic Typhoon Information and Surface Weather Characteristic Considering Monsoon Effects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 877-895, January.
    11. D. Nagesh Kumar & Falguni Baliarsingh & K. Srinivasa Raju, 2010. "Optimal Reservoir Operation for Flood Control Using Folded Dynamic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1045-1064, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:22:y:2008:i:11:p:1625-1647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.