IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v16y2002i4p263-278.html
   My bibliography  Save this article

Sensitivity Analysis of the GIUH based Clark Model for a Catchment

Author

Listed:
  • Rakesh Kumar
  • C. Chatterjee
  • A. Lohani
  • Sanjay Kumar
  • R. Singh

Abstract

For estimation of runoff response of an ungauged catchment resulting from a rainfall event, geomorphologicalinstantaneous unit hydrograph (GIUH) approach is getting popularbecause of its direct application to an ungauged catchment. Itavoids adoption of tedious methods of regionalization of unithydrograph; wherein, the historical rainfall-runoff data of anumber of gauged catchments are required to be analyzed. In thisstudy, the GIUH derived from geomorphological characteristics ofa catchment has been related to the parameters of Clark IUH modelfor deriving its complete shape. The DSRO hydrographs estimatedby the GIUH based Clark model have been compared with the DSROhydrographs computed by the Clark IUH model option of the HEC-1package and the Nash IUH model by employing some of the commonlyused error functions. Sensitivity analysis of the GIUH basedClark model has been conducted with the objective to identify thegeomorphological and other model parameters which are moresensitive in estimation of peak of unit hydrographs computed bythe GIUH based Clark model. So that these parameters may beevaluated with more precision for accurate estimation of floodhydrographs for the ungauged catchments. Copyright Kluwer Academic Publishers 2002

Suggested Citation

  • Rakesh Kumar & C. Chatterjee & A. Lohani & Sanjay Kumar & R. Singh, 2002. "Sensitivity Analysis of the GIUH based Clark Model for a Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(4), pages 263-278, August.
  • Handle: RePEc:spr:waterr:v:16:y:2002:i:4:p:263-278
    DOI: 10.1023/A:1021920717410
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1021920717410
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1021920717410?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Ahmad & Abdul Ghumman & Sajjad Ahmad, 2009. "Estimation of Clark’s Instantaneous Unit Hydrograph Parameters and Development of Direct Surface Runoff Hydrograph," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2417-2435, September.
    2. Emna Ellouze-Gargouri & Zoubeida Bargaoui, 2012. "Runoff Estimation for an Ungauged Catchment Using Geomorphological Instantaneous Unit Hydrograph (GIUH) and Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1615-1638, April.
    3. Xiaoyan Zhai & Liang Guo & Ronghua Liu & Yongyong Zhang, 2018. "Rainfall threshold determination for flash flood warning in mountainous catchments with consideration of antecedent soil moisture and rainfall pattern," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 605-625, November.
    4. A. Sarangi & C. Madramootoo & P. Enright & S. Prasher, 2007. "Evaluation of three unit hydrograph models to predict the surface runoff from a Canadian watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(7), pages 1127-1143, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:16:y:2002:i:4:p:263-278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.