Author
Abstract
Let us suppose that A and B are nonempty subsets of a metric space. Let S:A⟶B and T:A⟶B be nonself-mappings. Considering the fact S and T are nonself-mappings, it is feasible that the equations Sx=x and Tx=x have no common solution, designated as a common fixed point of the mappings S and T. Eventually, when the equations have no common solution, one contemplates to figure out an element x that is in close proximity to Sx and Tx in the sense that d(x,Sx) and d(x,Tx) are minimum. In fact, common best proximity point theorems scrutinize the existence of such optimal approximate solutions, known as common best proximity points, to the equations Sx=x and Tx=x in the event that the equations have no common solution. Further, one can perceive that the real-valued functions x⟶d(x,Sx) and x⟶d(x,Tx) estimate the magnitude of the error involved for any common approximate solution of the equations Sx=x and Tx=x. In light of the fact that the distance between x and Sx, and the distance between x and Tx are at least the distance between A and B for all x in A, a common best proximity point theorem ascertains global minimum of both functions x⟶d(x,Sx) and x⟶d(x,Tx) by limiting a common approximate solution of the equations Sx=x and Tx=x to fulfil the requirement that d(x,Sx)=d(A,B) and d(x,Tx)=d(A,B). This article discusses a common best proximity point theorem for a pair of nonself-mappings, one of which dominates the other proximally, thereby yielding common optimal approximate solutions of some fixed point equations when there is no common solution. Copyright Sociedad de Estadística e Investigación Operativa 2013
Suggested Citation
S. Sadiq Basha, 2013.
"Common best proximity points: global minimal solutions,"
TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 182-188, April.
Handle:
RePEc:spr:topjnl:v:21:y:2013:i:1:p:182-188
DOI: 10.1007/s11750-011-0171-2
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:21:y:2013:i:1:p:182-188. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.