Author
Listed:
- Blas Gómez
(Universidad de Castilla-La Mancha)
- Estefanía Coronado
(Universidad de Castilla-La Mancha
I2CAT Foundation)
- José Villalón
(Universidad de Castilla-La Mancha)
- Antonio Garrido
(Universidad de Castilla-La Mancha)
Abstract
Multimedia content represents a significant portion of the traffic in computer networks, and COVID-19 has only made this portion bigger, as it now represents an even more significant part of the traffic. This overhead can, however, be reduced when many users access the same content. In this context, Wi-Fi, which is the most popular Radio Access Technology, introduced the Group Addressed Transmission Service (GATS) with the amendment IEEE 802.11aa. GATS defines a set of policies aiming to make multicast traffic more robust and efficient. However, Wi-Fi is constantly evolving, and as it improves and greater bandwidths and data rates become available, it is necessary to reevaluate the behavior of mechanisms introduced in past amendments. This is also the case with GATS, whose policies have different behaviors and adapt better to different channel conditions. These policies have been evaluated in the past on High Throughput networks. Still, none of the evaluations provided insights into the behavior of GATS policies in Very-High Throughput (VHT) physical layers in a realistic manner. This is extremely relevant as a greater available bandwidth can impact the decisions of the GATS policy configuration. Thus, in this work, we present an evaluation of the IEEE 802.11aa amendment with a VHT physical layer in a realistic scenario that uses Minstrel as a rate adaptation algorithm simulated in NS-3.
Suggested Citation
Blas Gómez & Estefanía Coronado & José Villalón & Antonio Garrido, 2024.
"Evaluation of the IEEE 802.11aa group addressed service in VHT Wi-Fi networks,"
Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 87(3), pages 651-661, November.
Handle:
RePEc:spr:telsys:v:87:y:2024:i:3:d:10.1007_s11235-024-01203-9
DOI: 10.1007/s11235-024-01203-9
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:87:y:2024:i:3:d:10.1007_s11235-024-01203-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.