IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v86y2024i3d10.1007_s11235-024-01137-2.html
   My bibliography  Save this article

Optimization of WSN localization algorithm based on improved multi-strategy seagull algorithm

Author

Listed:
  • Xiuwu Yu

    (University of South China)

  • Yinhao Liu

    (University of South China)

  • Yong Liu

    (Shenzhen University)

Abstract

This paper proposes a multi-strategy modified seagull algorithm to optimize DV-Hop localization algorithm (DISO) to improve the precision of non-range-ranging localization algorithm in wireless sensor networks. Firstly, the algorithm analyzes the causes of errors in the positioning of the traditional non-ranging location algorithm DV-Hop, and improves these steps. Among them, the communication area of anchor nodes is divided by different radii, so as to reduce the influence of distance on hop number. The node distribution is stochastic, so the mean square error is used instead of the unbiased estimation, and the weight is introduced to calculate the average jump distance, which reduces the error caused by the random distribution of nodes. Secondly, the objective function optimization method is used to replace the trilateral measurement, and the improved seagull optimization algorithm is used for iterative optimization. Finally, the seagull optimization algorithm is modified in view of its shortcomings. The chaotic mapping was used to initialize the seagull population and increase its diversity. The flight parameters of seagull and the position update methods of the worst and best seagull are improved, and the optimization ability of the algorithm is improved by combining levy flight mechanism and T distribution variation strategy. The simulation results show that the initial population distribution of DISO algorithm is more uniform, which establishes a basic advantage for the subsequent optimization. Keeping the other parameters consistent, DISO algorithm has higher positioning accuracy than other comparison algorithms, no matter changing the number of anchor nodes or the total number of nodes or changing the communication radius. The positioning errors of DISO algorithm are reduced by 45.63%, 17.17%, 22.61% and 11.68% compared with DV-Hop algorithm and other comparison algorithms under different number of anchor nodes. Under different total number of nodes, the positioning error is reduced by 49.91%, 20.81%, 35.80% and 9.20%. Under different communication radius, the positioning error is reduced by 55.47%, 21.07%, 24.84% and 13.11%. It is proved that DISO algorithm has more accurate localization results.

Suggested Citation

  • Xiuwu Yu & Yinhao Liu & Yong Liu, 2024. "Optimization of WSN localization algorithm based on improved multi-strategy seagull algorithm," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 86(3), pages 547-558, July.
  • Handle: RePEc:spr:telsys:v:86:y:2024:i:3:d:10.1007_s11235-024-01137-2
    DOI: 10.1007/s11235-024-01137-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-024-01137-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-024-01137-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:86:y:2024:i:3:d:10.1007_s11235-024-01137-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.