IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v86y2024i3d10.1007_s11235-024-01125-6.html
   My bibliography  Save this article

VMRF: revolutionizing military border surveillance with extensive coverage and connectivity

Author

Listed:
  • S. P. Subotha

    (Rohini College of Engineering and Technology)

  • L. Femila

    (St. Xavier’s Catholic College of Engineering)

Abstract

Nowadays, wireless sensor networks (WSNs) are utilised in military-based applications like border surveillance. However, existing border surveillance methods have difficulties with energy efficiency, latency, security, connectivity, optimal path selection and coverage. In this paper, a Voronoi Modified Red Fox (VMRF) algorithm is proposed as a solution to these problems. Initially, secure cluster head (CH) selection and clustering is performed using Secure Spatial Intelligence-Enhanced Voronoi Clustering (SIEVC) to boost energy efficiency, security, and extend network coverage and connectivity. The SIEVC algorithm dynamically selects CHs based on past and present trust, identity trust, and energy trust to identify malicious nodes and form optimal clusters for improved network coverage and connectivity. It also employs dynamic cluster size adjustment to maintain proximity between CHs and cluster members and utilizes node alternation to ensure equitable cluster sizes. This approach minimizes energy depletion, enhances network longevity, and improves load balancing. The algorithm introduces a node alternation mechanism to balance cluster sizes and prevent energy holes. This approach ensures secure and efficient CH selection and promotes even energy distribution. Then the proposed modified red fox (MRF) optimization method, based on the fitness metric, computes the energy-efficient and safe path for data transmission. Trust, energy, distance, link quality and traffic intensity are the factors that the fitness function takes into account. Finally, the data is transmitted to the base station (BS) through CH along the path with the highest fitness value. Then the proposed VMRF algorithm is evaluated using the NS-2 platform, and the outcomes are compared with existing protocols. Based on the evaluations, the VMRF algorithm performs better than existing ones in terms of delay, energy consumption, throughput, packet delivery ratio (PDR), malicious node detection ratio, and residual energy.

Suggested Citation

  • S. P. Subotha & L. Femila, 2024. "VMRF: revolutionizing military border surveillance with extensive coverage and connectivity," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 86(3), pages 481-502, July.
  • Handle: RePEc:spr:telsys:v:86:y:2024:i:3:d:10.1007_s11235-024-01125-6
    DOI: 10.1007/s11235-024-01125-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-024-01125-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-024-01125-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:86:y:2024:i:3:d:10.1007_s11235-024-01125-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.