IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v78y2021i2d10.1007_s11235-021-00807-9.html
   My bibliography  Save this article

Upgrading an analog recovery loop for optimized decoding jointly to an increased data rate

Author

Listed:
  • Giuseppe Visalli

    (Independent Researcher, Padua)

Abstract

The maximum likelihood detection theory improves the error rate of a sub-optimal but cheaper, coded symbol recovery loop using oversampling proposed as an alternate solution for the decoding problem without the log-likelihood ratio computation. The former implementation delivers the output data in one-symbol delay, and the required transistor count makes this approach attractive for ultra-low-energy wireless applications. The proposed hardware upgrade includes an analog to digital converter and fixed-point accumulation logic to compute the soft values, replacing a trigger used as a hard detector. This work investigates the soft decoding in the presence of binary and non-binary source symbols. Simulation results show that the soft approach improves the signal-to-noise ratio by 3 dB and 2.5 dB when the encoding rates are 1/3 and 2/3.

Suggested Citation

  • Giuseppe Visalli, 2021. "Upgrading an analog recovery loop for optimized decoding jointly to an increased data rate," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 78(2), pages 239-252, October.
  • Handle: RePEc:spr:telsys:v:78:y:2021:i:2:d:10.1007_s11235-021-00807-9
    DOI: 10.1007/s11235-021-00807-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-021-00807-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-021-00807-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:78:y:2021:i:2:d:10.1007_s11235-021-00807-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.