Author
Abstract
The unprecedented frequency diversity gain offered by complementary coded code-division multiple access (CC-CDMA) makes it more attractive than conventional CDMA systems in frequency selective fading channels. CC-CDMA loses its interference-resilient capability due to non-ideal correlation characteristics of complementary codes (CC) under uplink asynchronous communications. The existence of multiple access interference (MAI) in asynchronous systems results in drastic reduction in error rate performance in CC-CDMA systems. In this paper, the analysis of successive interference cancellation (SIC) is proposed for CC-CDMA systems as an alternative to existing non-interference cancellation schemes in uplink communication. The average bit error probability expressions for single branch and M-branch CC-CDMA systems operating under Rician fading channels are derived using alternate integral expression of Q-function. The accuracy of obtained closed form error probability expressions are confirmed through the proposed joint SIC with maximal ratio combining and minimum mean square error combining techniques in uplink CC-CDMA systems. The significance of soft-decision compared to hard decision SIC for CC-CDMA systems is also analyzed for both equal power and extreme near-far conditions. Furthermore, the simulation results exposed that significant performance improvement is obtained under near-far situations in uplink asynchronous CC-CDMA systems overcoming the effects of MAI and achieving improved system capacity.
Suggested Citation
X. Ascar Davix & D. Judson, 2019.
"Successive interference cancellation in asynchronous CC-CDMA systems under Rician fading channels,"
Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 72(2), pages 261-271, October.
Handle:
RePEc:spr:telsys:v:72:y:2019:i:2:d:10.1007_s11235-019-00562-y
DOI: 10.1007/s11235-019-00562-y
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:72:y:2019:i:2:d:10.1007_s11235-019-00562-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.