IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v9y2017i2d10.1007_s12561-016-9162-z.html
   My bibliography  Save this article

Censoring-robust estimation in observational survival studies: Assessing the relative effectiveness of vascular access type on patency among end-stage renal disease patients

Author

Listed:
  • Vinh Q. Nguyen

    () (University of California)

  • Daniel L. Gillen

    () (University of California)

Abstract

Abstract The proportional hazards model is commonly used in observational studies to estimate and test a predefined measure of association between a variable of interest and the time to some event T. For example, it has been used to investigate the effect of vascular access type in patency among end-stage renal disease patients (Gibson et al., J Vasc Surg 34:694–700, 2001). The measure of association comes in the form of an adjusted hazard ratio as additional covariates are often included in the model to adjust for potential confounding. Despite its flexibility, the model comes with a rather strong assumption that is often not met in practice: a time-invariant effect of the covariates on the hazard function for T. When the proportional hazards assumption is violated, it is well known in the literature that the maximum partial likelihood estimator is consistent for a parameter that is dependent on the observed censoring distribution, leading to a quantity that is difficult to interpret and replicate as censoring is usually not of scientific concern and generally varies from study to study. Solutions have been proposed to remove the censoring dependence in the two-sample setting, but none has addressed the setting of multiple, possibly continuous, covariates. We propose a survival tree approach that identifies group-specific censoring based on adjustment covariates in the primary survival model that fits naturally into the theory developed for the two-sample case. With this methodology, we propose to draw inference on a predefined marginal adjusted hazard ratio that is valid and independent of censoring regardless of whether model assumptions hold.

Suggested Citation

  • Vinh Q. Nguyen & Daniel L. Gillen, 2017. "Censoring-robust estimation in observational survival studies: Assessing the relative effectiveness of vascular access type on patency among end-stage renal disease patients," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 406-430, December.
  • Handle: RePEc:spr:stabio:v:9:y:2017:i:2:d:10.1007_s12561-016-9162-z
    DOI: 10.1007/s12561-016-9162-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-016-9162-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ronghui Xu & David P. Harrington, 2001. "A Semiparametric Estimate of Treatment Effects with Censored Data," Biometrics, The International Biometric Society, vol. 57(3), pages 875-885, September.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:9:y:2017:i:2:d:10.1007_s12561-016-9162-z. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.