IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v15y2023i3d10.1007_s12561-022-09344-8.html
   My bibliography  Save this article

Detection of Cell Separation-Induced Gene Expression Through a Penalized Deconvolution Approach

Author

Listed:
  • An-Shun Tai

    (National Tsing Hua University
    National Cheng Kung University)

  • Chun-Chao Wang

    (National Tsing Hua University)

  • Wen-Ping Hsieh

    (National Tsing Hua University)

Abstract

Interest in studying genomics and transcriptomics at the single-cell level has been increasing. One of the keys to single-cell study is developing cell-sorting technology to separate cells according to their type. However, the process of cell isolation changes the cell microenvironment that affects gene activity, and this change in gene expression can affect the conclusion of the single-cell study. To address this, we propose a novel PEnalized deconvolution Analysis for Cell separation-induced Heterogeneity (PEACH). By adopting a Bayesian variable selection scheme, PEACH can simultaneously decompose cell-type-specific expression from bulk tissue and identify cell separation-induced differential expression (CSI-DE) genes. We validated PEACH by using four benchmark datasets and one in silico mixture dataset. In the real application, we used PEACH to analyze an immune-related disease dataset, a blood dataset, and a skin dataset, and we consistently identified immediate-early genes, ribosomal protein genes, and mitochondrial genes across the three datasets. Our study illustrates that genes sensitive to the cell-sorting process are biologically meaningful and nonnegligible, and it may provide new insights into single-cell studies for transcriptomic analysis. The model has been implemented in the R package “PEACH,” and the algorithm is available for download.

Suggested Citation

  • An-Shun Tai & Chun-Chao Wang & Wen-Ping Hsieh, 2023. "Detection of Cell Separation-Induced Gene Expression Through a Penalized Deconvolution Approach," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(3), pages 692-718, December.
  • Handle: RePEc:spr:stabio:v:15:y:2023:i:3:d:10.1007_s12561-022-09344-8
    DOI: 10.1007/s12561-022-09344-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-022-09344-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-022-09344-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oyetunji E Ogundijo & Xiaodong Wang, 2017. "A sequential Monte Carlo approach to gene expression deconvolution," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-31, October.
    2. Benjamin Lacar & Sara B. Linker & Baptiste N. Jaeger & Suguna Rani Krishnaswami & Jerika J. Barron & Martijn J. E. Kelder & Sarah L. Parylak & Apuã C. M. Paquola & Pratap Venepally & Mark Novotny & Ca, 2016. "Correction: Corrigendum: Nuclear RNA-seq of single neurons reveals molecular signatures of activation," Nature Communications, Nature, vol. 7(1), pages 1-1, November.
    3. She, Yiyuan & Owen, Art B., 2011. "Outlier Detection Using Nonconvex Penalized Regression," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 626-639.
    4. Xuran Wang & Jihwan Park & Katalin Susztak & Nancy R. Zhang & Mingyao Li, 2019. "Bulk tissue cell type deconvolution with multi-subject single-cell expression reference," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    5. Benjamin Lacar & Sara B. Linker & Baptiste N. Jaeger & Suguna Rani Krishnaswami & Jerika J. Barron & Martijn J. E. Kelder & Sarah L. Parylak & Apuã C. M. Paquola & Pratap Venepally & Mark Novotny & Ca, 2016. "Nuclear RNA-seq of single neurons reveals molecular signatures of activation," Nature Communications, Nature, vol. 7(1), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaya J. E. Matson & Daniel E. Russ & Claudia Kathe & Isabelle Hua & Dragan Maric & Yi Ding & Jonathan Krynitsky & Randall Pursley & Anupama Sathyamurthy & Jordan W. Squair & Boaz P. Levi & Gregoire Co, 2022. "Single cell atlas of spinal cord injury in mice reveals a pro-regenerative signature in spinocerebellar neurons," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Ruth Styfhals & Grygoriy Zolotarov & Gert Hulselmans & Katina I. Spanier & Suresh Poovathingal & Ali M. Elagoz & Seppe Winter & Astrid Deryckere & Nikolaus Rajewsky & Giovanna Ponte & Graziano Fiorito, 2022. "Cell type diversity in a developing octopus brain," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    4. Bárbara Andrade Barbosa & Saskia D. Asten & Ji Won Oh & Arantza Farina-Sarasqueta & Joanne Verheij & Frederike Dijk & Hanneke W. M. Laarhoven & Bauke Ylstra & Juan J. Garcia Vallejo & Mark A. Wiel & Y, 2021. "Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    6. Keyong Sun & Runda Xu & Fuhai Ma & Naixue Yang & Yang Li & Xiaofeng Sun & Peng Jin & Wenzhe Kang & Lemei Jia & Jianping Xiong & Haitao Hu & Yantao Tian & Xun Lan, 2022. "scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Yingli Pan & Zhan Liu & Guangyu Song, 2021. "Outlier detection under a covariate-adjusted exponential regression model with censored data," Computational Statistics, Springer, vol. 36(2), pages 961-976, June.
    8. Chang Su & Zichun Xu & Xinning Shan & Biao Cai & Hongyu Zhao & Jingfei Zhang, 2023. "Cell-type-specific co-expression inference from single cell RNA-sequencing data," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Junlong Zhao & Chao Liu & Lu Niu & Chenlei Leng, 2019. "Multiple influential point detection in high dimensional regression spaces," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 385-408, April.
    10. Griffin, Maryclare & Hoff, Peter D., 2019. "Lasso ANOVA decompositions for matrix and tensor data," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 181-194.
    11. Z. John Daye & Jinbo Chen & Hongzhe Li, 2012. "High-Dimensional Heteroscedastic Regression with an Application to eQTL Data Analysis," Biometrics, The International Biometric Society, vol. 68(1), pages 316-326, March.
    12. Su, Peng & Tarr, Garth & Muller, Samuel & Wang, Suojin, 2024. "CR-Lasso: Robust cellwise regularized sparse regression," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    13. Vishnu Muraleedharan Saraswathy & Lili Zhou & Mayssa H. Mokalled, 2024. "Single-cell analysis of innate spinal cord regeneration identifies intersecting modes of neuronal repair," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    14. Xiao Zhou & Zhen Cheng & Mingyu Dong & Qi Liu & Weiyang Yang & Min Liu & Junzhang Tian & Weibin Cheng, 2022. "Tumor fractions deciphered from circulating cell-free DNA methylation for cancer early diagnosis," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Manvendra Singh & Ying Zhao & Vinicius Daguano Gastaldi & Sonja M. Wojcik & Yasmina Curto & Riki Kawaguchi & Ricardo M. Merino & Laura Fernandez Garcia-Agudo & Holger Taschenberger & Nils Brose & Dani, 2023. "Erythropoietin re-wires cognition-associated transcriptional networks," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Zhang, Yuexia & Qin, Guoyou & Zhu, Zhongyi & Xu, Wanghong, 2019. "A novel robust approach for analysis of longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 83-95.
    17. David R. Ghasemi & Konstantin Okonechnikov & Anne Rademacher & Stephan Tirier & Kendra K. Maass & Hanna Schumacher & Piyush Joshi & Maxwell P. Gold & Julia Sundheimer & Britta Statz & Ahmet S. Rifaiog, 2024. "Compartments in medulloblastoma with extensive nodularity are connected through differentiation along the granular precursor lineage," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    18. Zhenzhen Xun & Xinyu Ding & Yao Zhang & Benyan Zhang & Shujing Lai & Duowu Zou & Junke Zheng & Guoqiang Chen & Bing Su & Leng Han & Youqiong Ye, 2023. "Reconstruction of the tumor spatial microenvironment along the malignant-boundary-nonmalignant axis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Maja Olecka & Alena Bömmel & Lena Best & Madlen Haase & Silke Foerste & Konstantin Riege & Thomas Dost & Stefano Flor & Otto W. Witte & Sören Franzenburg & Marco Groth & Björn Eyss & Christoph Kaleta , 2024. "Nonlinear DNA methylation trajectories in aging male mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Mishra, Aditya & Müller, Christian L., 2022. "Robust regression with compositional covariates," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:15:y:2023:i:3:d:10.1007_s12561-022-09344-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.