IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v4y2023i2d10.1007_s43069-023-00223-6.html
   My bibliography  Save this article

Random Forest Pruning Techniques: A Recent Review

Author

Listed:
  • Youness Manzali

    (Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University)

  • Mohamed Elfar

    (Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University)

Abstract

Random forest is one of the most used machine learning algorithms since its high predictive performance. However, many studies criticize it for the fact that it generates a large number of trees, which requires important storage space and a significant learning time. In addition, the final model induced by RF may contain redundant trees and others that do not contribute to the prediction that may even disadvantage performance. This is why many researchers try to reduce the number of trees in a forest called forest pruning. This article presents a study of the pruning work of random forest classifiers, explains in detail the operating principle of each technique, and cites their advantages and disadvantages. Finally, it compares their classification performance in terms of accuracy, speed of learning, and complexity.

Suggested Citation

  • Youness Manzali & Mohamed Elfar, 2023. "Random Forest Pruning Techniques: A Recent Review," SN Operations Research Forum, Springer, vol. 4(2), pages 1-14, June.
  • Handle: RePEc:spr:snopef:v:4:y:2023:i:2:d:10.1007_s43069-023-00223-6
    DOI: 10.1007/s43069-023-00223-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-023-00223-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-023-00223-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zardad Khan & Asma Gul & Aris Perperoglou & Miftahuddin Miftahuddin & Osama Mahmoud & Werner Adler & Berthold Lausen, 2020. "Ensemble of optimal trees, random forest and random projection ensemble classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 97-116, March.
    2. Chung, Dongjun & Kim, Hyunjoong, 2015. "Accurate ensemble pruning with PL-bagging," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiffany Elsten & Mark Rooij, 2022. "SUBiNN: a stacked uni- and bivariate kNN sparse ensemble," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 847-874, December.
    2. Gerhard Tutz, 2022. "Ordinal Trees and Random Forests: Score-Free Recursive Partitioning and Improved Ensembles," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 241-263, July.
    3. Muhammed-Fatih Kaya, 2022. "Pattern Labelling of Business Communication Data," Group Decision and Negotiation, Springer, vol. 31(6), pages 1203-1234, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:4:y:2023:i:2:d:10.1007_s43069-023-00223-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.