IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v130y2025i7d10.1007_s11192-025-05339-6.html
   My bibliography  Save this article

Mapping the unseen in practice: comparing latent Dirichlet allocation and BERTopic for navigating topic spaces

Author

Listed:
  • Pierre Benz

    (École de bibliothéconomie et des sciences de l’information, Université de Montréal)

  • Carolina Pradier

    (École de bibliothéconomie et des sciences de l’information, Université de Montréal)

  • Diego Kozlowski

    (École de bibliothéconomie et des sciences de l’information, Université de Montréal)

  • Natsumi S. Shokida

    (École de bibliothéconomie et des sciences de l’information, Université de Montréal)

  • Vincent Larivière

    (École de bibliothéconomie et des sciences de l’information, Université de Montréal
    Université de Montréal
    Université du Québec à Montréal
    Stellenbosch University)

Abstract

This article focuses on comparing two widely used techniques of topic modeling, namely latent Dirichlet allocation (LDA) and BERTopic. The first is a Bayesian probabilistic model and the latter is rooted in deep learning. It remains unclear what those differences imply in practice, and how they contribute to our sociological understanding of the inner works of science. This paper compares results obtained by LDA and BERTopic applied to the same dataset composed of all scientific articles (n = 34,797) authored by all biology professors in Switzerland between 2008 and 2020. We propose a step-by-step demonstration from data pre-processing to the results. Hence we emphasize that understanding their underlying functioning is essential for effectively interpreting the outcomes and balance between the strengths and weaknesses of the two techniques. Although they differ in their operationalization, LDA and BERTopic produce topic spaces with a similar global configuration. However, major differences are observed when focusing on specific multidimensional concepts, such as gene. With evidence from our empirical demonstration, we overall stress that topic modeling offers a highly valuable ground for understanding the semantic structure of scientific fields when combined with in-depth knowledge of the object under scrutiny.

Suggested Citation

  • Pierre Benz & Carolina Pradier & Diego Kozlowski & Natsumi S. Shokida & Vincent Larivière, 2025. "Mapping the unseen in practice: comparing latent Dirichlet allocation and BERTopic for navigating topic spaces," Scientometrics, Springer;Akadémiai Kiadó, vol. 130(7), pages 3839-3870, July.
  • Handle: RePEc:spr:scient:v:130:y:2025:i:7:d:10.1007_s11192-025-05339-6
    DOI: 10.1007/s11192-025-05339-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-025-05339-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-025-05339-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Staša Milojević & Cassidy R. Sugimoto & Erjia Yan & Ying Ding, 2011. "The cognitive structure of Library and Information Science: Analysis of article title words," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(10), pages 1933-1953, October.
    2. repec:plo:pone00:0122565 is not listed on IDEAS
    3. Peter van den Besselaar & Gaston Heimeriks, 2006. "Mapping research topics using word-reference co-occurrences: A method and an exploratory case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 377-393, September.
    4. Jean-Charles Lamirel & Francis Lareau & Christophe Malaterre, 2024. "CFMf topic-model: comparison with LDA and Top2Vec," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(10), pages 6387-6405, October.
    5. Diego Kozlowski & Jennifer Dusdal & Jun Pang & Andreas Zilian, 2021. "Semantic and relational spaces in science of science: deep learning models for article vectorisation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5881-5910, July.
    6. Patrick Glenisson & Wolfgang Glänzel & Olle Persson, 2005. "Combining full-text analysis and bibliometric indicators. A pilot study," Scientometrics, Springer;Akadémiai Kiadó, vol. 63(1), pages 163-180, March.
    7. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    8. Erjia Yan, 2015. "Research dynamics, impact, and dissemination: A topic-level analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(11), pages 2357-2372, November.
    9. Loet Leydesdorff & Adina Nerghes, 2017. "Co-word maps and topic modeling: A comparison using small and medium-sized corpora (N > 1,000)," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(4), pages 1024-1035, April.
    10. Kevin W. Boyack & Richard Klavans & Katy Börner, 2005. "Mapping the backbone of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(3), pages 351-374, August.
    11. Chyi-Kwei Yau & Alan Porter & Nils Newman & Arho Suominen, 2014. "Clustering scientific documents with topic modeling," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(3), pages 767-786, September.
    12. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    13. Shiji Chen & Clément Arsenault & Yves Gingras & Vincent Larivière, 2015. "Exploring the interdisciplinary evolution of a discipline: the case of Biochemistry and Molecular Biology," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1307-1323, February.
    14. Shu, Fei & Julien, Charles-Antoine & Zhang, Lin & Qiu, Junping & Zhang, Jing & Larivière, Vincent, 2019. "Comparing journal and paper level classifications of science," Journal of Informetrics, Elsevier, vol. 13(1), pages 202-225.
    15. Staša Milojević & Cassidy R. Sugimoto & Erjia Yan & Ying Ding, 2011. "The cognitive structure of Library and Information Science: Analysis of article title words," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(10), pages 1933-1953, October.
    16. Henry Small, 1999. "Visualizing science by citation mapping," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 50(9), pages 799-813.
    17. Arho Suominen & Hannes Toivanen, 2016. "Map of science with topic modeling: Comparison of unsupervised learning and human-assigned subject classification," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(10), pages 2464-2476, October.
    18. Jonathan B. Slapin & Sven‐Oliver Proksch, 2008. "A Scaling Model for Estimating Time‐Series Party Positions from Texts," American Journal of Political Science, John Wiley & Sons, vol. 52(3), pages 705-722, July.
    19. Matthias Rüdiger & David Antons & Amol M Joshi & Torsten-Oliver Salge, 2022. "Topic modeling revisited: New evidence on algorithm performance and quality metrics," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-25, April.
    20. Alan L. Porter & Ismael Rafols, 2009. "Is science becoming more interdisciplinary? Measuring and mapping six research fields over time," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(3), pages 719-745, December.
    21. Loet Leydesdorff, 1997. "Why words and co‐words cannot map the development of the sciences," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 48(5), pages 418-427, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pin Li & Guoli Yang & Chuanqi Wang, 2019. "Visual topical analysis of library and information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1753-1791, December.
    2. Rons, Nadine, 2018. "Bibliometric approximation of a scientific specialty by combining key sources, title words, authors and references," Journal of Informetrics, Elsevier, vol. 12(1), pages 113-132.
    3. Ismael Rafols & Alan Porter & Loet Leydesdorff, 2009. "Overlay Maps of Science: a New Tool for Research Policy," SPRU Working Paper Series 179, SPRU - Science Policy Research Unit, University of Sussex Business School.
    4. Jianhua Hou & Xiucai Yang & Chaomei Chen, 2018. "Emerging trends and new developments in information science: a document co-citation analysis (2009–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 869-892, May.
    5. Hric, Darko & Kaski, Kimmo & Kivelä, Mikko, 2018. "Stochastic block model reveals maps of citation patterns and their evolution in time," Journal of Informetrics, Elsevier, vol. 12(3), pages 757-783.
    6. Chaoqun Ni & Cassidy R. Sugimoto & Blaise Cronin, 2013. "Visualizing and comparing four facets of scholarly communication: producers, artifacts, concepts, and gatekeepers," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1161-1173, March.
    7. Guo Chen & Shuya Chen & Zhili Chen & Lu Xiao & Jiming Hu, 2025. "How much data is sufficient for reliable bibliometric domain analysis? A multi-scenario experimental approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 130(5), pages 2923-2946, May.
    8. Andrea Bonaccorsi & Nicola Melluso & Francesco Alessandro Massucci, 2022. "Exploring the antecedents of interdisciplinarity at the European Research Council: a topic modeling approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 6961-6991, December.
    9. Yan, Erjia & Ding, Ying & Milojević, Staša & Sugimoto, Cassidy R., 2012. "Topics in dynamic research communities: An exploratory study for the field of information retrieval," Journal of Informetrics, Elsevier, vol. 6(1), pages 140-153.
    10. Andreas Bjurström & Merritt Polk, 2011. "Climate change and interdisciplinarity: a co-citation analysis of IPCC Third Assessment Report," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(3), pages 525-550, June.
    11. María Pinto & Rosaura Fernández-Pascual & David Caballero-Mariscal & Dora Sales, 2020. "Information literacy trends in higher education (2006–2019): visualizing the emerging field of mobile information literacy," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1479-1510, August.
    12. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    13. A. Abrizah & A. Noorhidawati & A. N. Zainab, 2015. "LIS journals categorization in the Journal Citation Report: a stated preference study," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1083-1099, February.
    14. Andrea Zielinski, 2022. "Impact of model settings on the text-based Rao diversity index," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7751-7768, December.
    15. Konstantin Fursov & Alina Kadyrova, 2017. "How the analysis of transitionary references in knowledge networks and their centrality characteristics helps in understanding the genesis of growing technology areas," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1947-1963, June.
    16. Sameer Kumar & Jariah Mohd. Jan, 2014. "Research collaboration networks of two OIC nations: comparative study between Turkey and Malaysia in the field of ‘Energy Fuels’, 2009–2011," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 387-414, January.
    17. Abhijit Thakuria & Dipen Deka, 2024. "A decadal study on identifying latent topics and research trends in open access LIS journals using topic modeling approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 3841-3869, July.
    18. Kraker, Peter & Schlögl, Christian & Jack, Kris & Lindstaedt, Stefanie, 2015. "Visualization of co-readership patterns from an online reference management system," Journal of Informetrics, Elsevier, vol. 9(1), pages 169-182.
    19. Chiara Carusi & Giuseppe Bianchi, 2020. "A look at interdisciplinarity using bipartite scholar/journal networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 867-894, February.
    20. Keisuke Okamura, 2019. "Interdisciplinarity revisited: evidence for research impact and dynamism," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 5(1), pages 1-9, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:130:y:2025:i:7:d:10.1007_s11192-025-05339-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.