IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v109y2025i3d10.1007_s11134-025-09946-1.html
   My bibliography  Save this article

Balancing of the C-mu rule by intermediate priorities

Author

Listed:
  • Moshe Haviv

    (The Chinese University of Hong Kong
    The Hebrew University of Jerusalem)

Abstract

The $$C\mu $$ C μ -rule is well known to be socially optimal in the sense that it minimizes the overall mean waiting costs due to queueing. Yet, this rule is blind to fairness. In particular, it is possible that those with a high cost of wait per unit of time not only enjoy priority over other customers (which is acceptable) but may also end up incurring less waiting costs than those with a corresponding low parameter (which is less acceptable). We suggest a fairer scheme which minimizes the overall cost under the constraint that this anomaly does not exist. It is based on partitioning customers’ classes into leagues, such that absolute priority is granted among the leagues a-la the $$C\mu $$ C μ -rule, while within leagues intermediate priorities, such as accumulated priorities, are used. Toward that end, we revisited some results on such priority schemes and derived some new ones.

Suggested Citation

  • Moshe Haviv, 2025. "Balancing of the C-mu rule by intermediate priorities," Queueing Systems: Theory and Applications, Springer, vol. 109(3), pages 1-21, September.
  • Handle: RePEc:spr:queues:v:109:y:2025:i:3:d:10.1007_s11134-025-09946-1
    DOI: 10.1007/s11134-025-09946-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-025-09946-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-025-09946-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. A. Federgruen & H. Groenevelt, 1988. "M/G/c Queueing Systems with Multiple Customer Classes: Characterization and Control of Achievable Performance Under Nonpreemptive Priority Rules," Management Science, INFORMS, vol. 34(9), pages 1121-1138, September.
    2. L. Kleinrock, 1964. "A delay dependent queue discipline," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 11(3‐4), pages 329-341, September.
    3. E. G. Coffman & I. Mitrani, 1980. "A Characterization of Waiting Time Performance Realizable by Single-Server Queues," Operations Research, INFORMS, vol. 28(3-part-ii), pages 810-821, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bertsimas, Dimitris., 1995. "The achievable region method in the optimal control of queueing systems : formulations, bounds and policies," Working papers 3837-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    2. Veeraruna Kavitha & Jayakrishnan Nair & Raman Kumar Sinha, 2019. "Pseudo conservation for partially fluid, partially lossy queueing systems," Annals of Operations Research, Springer, vol. 277(2), pages 255-292, June.
    3. Bertsimas, Dimitris. & Niño-Mora, Jose., 1994. "Restless bandit, linear programming relaxations and a primal-dual heuristic," Working papers 3727-94., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    4. Tianhu Deng & Ying‐Ju Chen & Zuo‐Jun Max Shen, 2015. "Optimal pricing and scheduling control of product shipping," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(3), pages 215-227, April.
    5. José Niño-Mora, 2006. "Restless Bandit Marginal Productivity Indices, Diminishing Returns, and Optimal Control of Make-to-Order/Make-to-Stock M/G/1 Queues," Mathematics of Operations Research, INFORMS, vol. 31(1), pages 50-84, February.
    6. Dimitris Bertsimas & José Niño-Mora, 1996. "Optimization of multiclass queueing networks with changeover times via the achievable region method: Part II, the multi-station case," Economics Working Papers 314, Department of Economics and Business, Universitat Pompeu Fabra, revised Aug 1998.
    7. Baris Ata & Yichuan Ding & Stefanos Zenios, 2021. "An Achievable-Region-Based Approach for Kidney Allocation Policy Design with Endogenous Patient Choice," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 36-54, 1-2.
    8. Zhang, Zhengmin & Gong, Yeming & Yuan, Zhe & Chen, Wanying, 2024. "Robotic warehouse systems considering dynamic priority," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    9. José Niño-Mora, 2000. "On certain greedoid polyhedra, partially indexable scheduling problems and extended restless bandit allocation indices," Economics Working Papers 456, Department of Economics and Business, Universitat Pompeu Fabra.
    10. R. Garbe & K. D. Glazebrook, 1998. "Submodular Returns and Greedy Heuristics for Queueing Scheduling Problems," Operations Research, INFORMS, vol. 46(3), pages 336-346, June.
    11. William P. Barnett & Daniel A. Levinthal, 2017. "Special Issue Introduction: Evolutionary Logics of Strategy and Organization," Strategy Science, INFORMS, vol. 2(1), pages 1-1, March.
    12. Anupam Gupta & Ravishankar Krishnaswamy & Viswanath Nagarajan & R. Ravi, 2015. "Running Errands in Time: Approximation Algorithms for Stochastic Orienteering," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 56-79, February.
    13. Dimitris Bertsimas & José Niño-Mora, 1996. "Optimization of multiclass queueing networks with changeover times via the achievable region approach: Part I, the single-station case," Economics Working Papers 302, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 1998.
    14. Muhammad El-Taha, 2016. "Invariance of workload in queueing systems," Queueing Systems: Theory and Applications, Springer, vol. 83(1), pages 181-192, June.
    15. Dimitris Bertsimas & Velibor V. Mišić, 2016. "Decomposable Markov Decision Processes: A Fluid Optimization Approach," Operations Research, INFORMS, vol. 64(6), pages 1537-1555, December.
    16. Friedman, Eric & Moulin, Herve, 1999. "Three Methods to Share Joint Costs or Surplus," Journal of Economic Theory, Elsevier, vol. 87(2), pages 275-312, August.
    17. Dimitris Bertsimas & Vivek F. Farias & Nikolaos Trichakis, 2012. "On the Efficiency-Fairness Trade-off," Management Science, INFORMS, vol. 58(12), pages 2234-2250, December.
    18. Hassin, Refael & Puerto, Justo & Fernández, Francisco R., 2009. "The use of relative priorities in optimizing the performance of a queueing system," European Journal of Operational Research, Elsevier, vol. 193(2), pages 476-483, March.
    19. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    20. Binyamin Oz & Seva Shneer & Ilze Ziedins, 2022. "Queueing models for addictive tasks," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 325-327, April.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:109:y:2025:i:3:d:10.1007_s11134-025-09946-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.