IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v59y2025i3d10.1007_s11135-025-02066-1.html
   My bibliography  Save this article

Artificial intelligence in qualitative analysis: a practical guide and reflections based on results from using GPT to analyze interview data in a substance use program

Author

Listed:
  • Yang Yang

    (Texas Christian University)

  • Liran Ma

    (Miami University)

Abstract

Language-based text provide valuable insights into people’s lived experiences. While traditional qualitative analysis is used to capture these nuances, new paradigms are needed to scale qualitative research effectively. Artificial intelligence presents an unprecedented opportunity to expand the sale of analysis for obtaining such nuances. The study tests the application of GPT-4—a large language modeling—in qualitative data analysis using an existing set of text data derived from 60 qualitative interviews. Specifically, the study provides a practical guide for social and behavioral researchers, illustrating core elements and key processes, demonstrating its reliability by comparing GPT-generated codes with researchers’ codes, and evaluating its capacity for theory-driven qualitative analysis. The study followed a three-step approach: (1) prompt engineering, (2) reliability assessment by comparison of GPT-generated codes with researchers’ codes, and (3) evaluation of theory-driven thematic analysis on psychological constructs. The study underscores the utility of GPT’s capabilities in coding and analyzing text data with established qualitative methods while highlighting the need for qualitative expertise to guide GPT applications. Recommendations for further exploration are also discussed.

Suggested Citation

  • Yang Yang & Liran Ma, 2025. "Artificial intelligence in qualitative analysis: a practical guide and reflections based on results from using GPT to analyze interview data in a substance use program," Quality & Quantity: International Journal of Methodology, Springer, vol. 59(3), pages 2511-2534, June.
  • Handle: RePEc:spr:qualqt:v:59:y:2025:i:3:d:10.1007_s11135-025-02066-1
    DOI: 10.1007/s11135-025-02066-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-025-02066-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-025-02066-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:59:y:2025:i:3:d:10.1007_s11135-025-02066-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.