IDEAS home Printed from https://ideas.repec.org/a/spr/pardea/v6y2025i6d10.1007_s42985-025-00361-y.html
   My bibliography  Save this article

Local and global well-posedness for the kinetic derivative NLS on $$\mathbb {R}$$ R

Author

Listed:
  • Nobu Kishimoto

    (Kyoto University)

  • Kiyeon Lee

    (Korea Advanced Institute of Science and Technology)

Abstract

We investigate the local and global well-posedness of the kinetic derivative nonlinear Schrödinger equation(KDNLS) on $${{\mathbb {R}}}$$ R , described by $$\begin{aligned} i\partial _t u + \partial _x^2 u = i\alpha \partial _x (|u|^2 u) + i\beta \partial _x ({\mathcal {H}}(|u|^2) u), \end{aligned}$$ i ∂ t u + ∂ x 2 u = i α ∂ x ( | u | 2 u ) + i β ∂ x ( H ( | u | 2 ) u ) , where $$\alpha , \beta \in \mathbb {R}$$ α , β ∈ R , and $${\mathcal {H}}$$ H represents the Hilbert transformation. For KDNLS, the $$L^2$$ L 2 norm of a solution is decreasing (resp. increasing, conserved) when $$\beta $$ β is negative (resp. positive, zero). Focusing on the Sobolev spaces $$H^2$$ H 2 and $$H^2 \cap H^{1,1}$$ H 2 ∩ H 1 , 1 , we establish local well-posedness via the energy method combined with gauge transformations to address resonant interactions in both cases of negative and positive $$\beta $$ β . For the dissipative case $$\beta

Suggested Citation

  • Nobu Kishimoto & Kiyeon Lee, 2025. "Local and global well-posedness for the kinetic derivative NLS on $$\mathbb {R}$$ R," Partial Differential Equations and Applications, Springer, vol. 6(6), pages 1-30, December.
  • Handle: RePEc:spr:pardea:v:6:y:2025:i:6:d:10.1007_s42985-025-00361-y
    DOI: 10.1007/s42985-025-00361-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42985-025-00361-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42985-025-00361-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pardea:v:6:y:2025:i:6:d:10.1007_s42985-025-00361-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.