Author
Listed:
- Rouven Schur
(University of Duisburg-Essen, Chair of Production and Logistics Planning, Mercator School of Management)
- Kai Winheller
(University of Duisburg-Essen, Chair of Production and Logistics Planning, Mercator School of Management)
Abstract
Amid the rapid growth of online retail, last-mile delivery faces significant challenges, including the cost-effective delivery of goods to all delivery locations. Our work contributes to this stream by applying dynamic pricing techniques to effectively model the possible involvement of the crowd in fulfilling delivery tasks. The use of occasional drivers (ODs) as a viable, cost-effective alternative to traditional dedicated drivers (DDs) prompts the necessity to focus on the inherent challenge posed by the uncertainty of ODs’ arrival times and willingness to perform deliveries. We introduce a dynamic programming framework that offers individualized bundles of a delivery task and compensation to ODs as they arrive. This model, akin to a reversed form of dynamic pricing, accounts for ODs’ decision-making by treating their acceptance thresholds as a random variable. Therefore, our model addresses the dynamic and stochastic nature of OD availability and decision-making. We analytically solve the stage-wise optimization problem, outline inherent challenges such as the curses of dimensionality, and present structural properties. Tailored to meet these challenges, our approximation methods aim to accurately determine avoided costs, which are a key factor in calculating optimal compensation. Our simulation study reveals that the savings generated by involving ODs in deliveries can be significantly increased through our individualized dynamic compensation policy. This approach not only excels in generating savings for the firm but also provides a utility surplus for ODs. Additionally, we demonstrate the applicability of our approach to scenarios with time windows and illustrate the trade-off that arises from time window partitioning.
Suggested Citation
Rouven Schur & Kai Winheller, 2025.
"Optimizing last-mile delivery: a dynamic compensation strategy for occasional drivers,"
OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 47(4), pages 1075-1132, December.
Handle:
RePEc:spr:orspec:v:47:y:2025:i:4:d:10.1007_s00291-024-00796-6
DOI: 10.1007/s00291-024-00796-6
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:47:y:2025:i:4:d:10.1007_s00291-024-00796-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.