IDEAS home Printed from https://ideas.repec.org/a/spr/opmare/v18y2025i2d10.1007_s12063-024-00530-z.html
   My bibliography  Save this article

Research on the recovery method of disrupted flights considering passenger transfer and cancellation costs

Author

Listed:
  • Liang Lu

    (Civil Aviation University of China)

  • Yanfei Xu

    (Civil Aviation University of China)

  • Wei Fan

    (Civil Aviation University of China)

  • Haiying Pan

    (Digital Committee, XIAMEN AIR)

  • Waihung Ip

    (The Hong Kong Polytechnic University)

  • Kai Leung Yung

    (The Hong Kong Polytechnic University)

Abstract

In the face of extreme weather conditions, airport closures, or other circumstances, airlines often experience disruptions to their flight schedules, leading to the frequent operational challenge of disrupted flight recovery. The foundational model for disrupted flight recovery aims to recover as many flights as possible with minimal costs, typically encompassing aircraft re-routing and re-timing costs, aircraft maintenance costs, crew reassignment costs, and passenger transfer costs. Existing studies generally estimate these costs using fixed rates. In reality, the first three costs for airlines tend to remain relatively stable. However, different passenger transfer methods can result in significant cost variations, a focal point for ground service personnel during disrupted flight recovery. We conducted a detailed analysis of the cost combinations associated with various passenger transfer methods, including ticket refunds, overnight stays, rebooking on the same airline, and rebooking on other airlines. We established a comprehensive disrupted flight recovery model that considers the three relatively fixed costs and variations in passenger transfer costs, thereby enhancing the resilience of the traditional model based on passenger transfer methods. To solve this model, we employed an enhanced heuristic large-scale neighborhood search (LNS) algorithm. Simulation experiments on airline datasets demonstrated that recovering all disrupted flights primarily through passenger transfer is not necessarily the least costly scenario. The optimal flight recovery ratio depends on passenger refund rates and rebooking methods. By judiciously controlling passenger transfer methods and the recovery proportion of disrupted flights, comprehensive recovery costs for both flights and passengers can be reduced. The research findings not only provide theoretical support for airlines but also offer practical guidance for strategy formulation, improving passenger satisfaction, and controlling operational costs.

Suggested Citation

  • Liang Lu & Yanfei Xu & Wei Fan & Haiying Pan & Waihung Ip & Kai Leung Yung, 2025. "Research on the recovery method of disrupted flights considering passenger transfer and cancellation costs," Operations Management Research, Springer, vol. 18(2), pages 691-717, June.
  • Handle: RePEc:spr:opmare:v:18:y:2025:i:2:d:10.1007_s12063-024-00530-z
    DOI: 10.1007/s12063-024-00530-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12063-024-00530-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12063-024-00530-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin G. Thengvall & Jonathan F. Bard & Gang Yu, 2003. "A Bundle Algorithm Approach for the Aircraft Schedule Recovery Problem During Hub Closures," Transportation Science, INFORMS, vol. 37(4), pages 392-407, November.
    2. Voltes-Dorta, Augusto & Rodríguez-Déniz, Héctor & Suau-Sanchez, Pere, 2017. "Passenger recovery after an airport closure at tourist destinations: A case study of Palma de Mallorca airport," Tourism Management, Elsevier, vol. 59(C), pages 449-466.
    3. Sinclair, Karine & Cordeau, Jean-François & Laporte, Gilbert, 2014. "Improvements to a large neighborhood search heuristic for an integrated aircraft and passenger recovery problem," European Journal of Operational Research, Elsevier, vol. 233(1), pages 234-245.
    4. Luis Cadarso & Vikrant Vaze, 2023. "Passenger-Centric Integrated Airline Schedule and Aircraft Recovery," Transportation Science, INFORMS, vol. 57(3), pages 813-837, May.
    5. Dhirendra Prajapati & Fuli Zhou & Ashish Dwivedi & Tripti Singh & Lakshay Lakshay & Saurabh Pratap, 2022. "Sustainable Agro-Food Supply Chain in E-Commerce: Towards the Circular Economy," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    6. Ben Ahmed, Mohamed & Zeghal Mansour, Farah & Haouari, Mohamed, 2018. "Robust integrated maintenance aircraft routing and crew pairing," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 15-31.
    7. Khaled, Oumaima & Minoux, Michel & Mousseau, Vincent & Michel, Stéphane & Ceugniet, Xavier, 2018. "A multi-criteria repair/recovery framework for the tail assignment problem in airlines," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 137-151.
    8. Tianshun Yang & Yuzhen Hu, 2019. "Considering Passenger Preferences in Integrated Postdisruption Recoveries of Aircraft and Passengers," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-19, October.
    9. Liang, Zhe & Xiao, Fan & Qian, Xiongwen & Zhou, Lei & Jin, Xianfei & Lu, Xuehua & Karichery, Sureshan, 2018. "A column generation-based heuristic for aircraft recovery problem with airport capacity constraints and maintenance flexibility," Transportation Research Part B: Methodological, Elsevier, vol. 113(C), pages 70-90.
    10. Sun, Joo Yeon, 2020. "Airport curfew and scheduling differentiation: Domestic versus international competition," Journal of Air Transport Management, Elsevier, vol. 87(C).
    11. Uğur Arıkan & Sinan Gürel & M. Selim Aktürk, 2017. "Flight Network-Based Approach for Integrated Airline Recovery with Cruise Speed Control," Transportation Science, INFORMS, vol. 51(4), pages 1259-1287, November.
    12. Dhirendra Prajapati & Felix T. S. Chan & Yash Daultani & Saurabh Pratap, 2022. "Sustainable vehicle routing of agro-food grains in the e-commerce industry," International Journal of Production Research, Taylor & Francis Journals, vol. 60(24), pages 7319-7344, December.
    13. Niloofar Jafari & Seyed Hessameddin Zegordi, 2010. "The airline perturbation problem: considering disrupted passengers," Transportation Planning and Technology, Taylor & Francis Journals, vol. 33(2), pages 203-220, January.
    14. Lavanya Marla & Bo Vaaben & Cynthia Barnhart, 2017. "Integrated Disruption Management and Flight Planning to Trade Off Delays and Fuel Burn," Transportation Science, INFORMS, vol. 51(1), pages 88-111, February.
    15. Wen, Xin & Sun, Xuting & Ma, Hoi-Lam & Sun, Yige, 2022. "A column generation approach for operational flight scheduling and aircraft maintenance routing," Journal of Air Transport Management, Elsevier, vol. 105(C).
    16. Jon D. Petersen & Gustaf Sölveling & John-Paul Clarke & Ellis L. Johnson & Sergey Shebalov, 2012. "An Optimization Approach to Airline Integrated Recovery," Transportation Science, INFORMS, vol. 46(4), pages 482-500, November.
    17. Yan, Shangyao & Yang, Dah-Hwei, 1996. "A decision support framework for handling schedule perturbation," Transportation Research Part B: Methodological, Elsevier, vol. 30(6), pages 405-419, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naz Yeti̇moğlu, Yücel & Selim Aktürk, M., 2021. "Aircraft and passenger recovery during an aircraft’s unexpected unavailability," Journal of Air Transport Management, Elsevier, vol. 91(C).
    2. Huang, Lei & Xiao, Fan & Zhou, Jing & Duan, Zhenya & Zhang, Hua & Liang, Zhe, 2023. "A machine learning based column-and-row generation approach for integrated air cargo recovery problem," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    3. Huang, Zhouchun & Luo, Xiaodong & Jin, Xianfei & Karichery, Sureshan, 2022. "An iterative cost-driven copy generation approach for aircraft recovery problem," European Journal of Operational Research, Elsevier, vol. 301(1), pages 334-348.
    4. Jane Lee & Lavanya Marla & Alexandre Jacquillat, 2020. "Dynamic Disruption Management in Airline Networks Under Airport Operating Uncertainty," Transportation Science, INFORMS, vol. 54(4), pages 973-997, July.
    5. Rashedi, Navid & Sankey, Nolan & Vaze, Vikrant & Wei, Keji, 2025. "A machine learning approach for solution space reduction in aircraft disruption recovery," European Journal of Operational Research, Elsevier, vol. 323(1), pages 297-308.
    6. Ding, Yida & Wandelt, Sebastian & Wu, Guohua & Xu, Yifan & Sun, Xiaoqian, 2023. "Towards efficient airline disruption recovery with reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    7. Derui Wang & Yanfeng Wu & Jian-Qiang Hu & Miaomiao Liu & Peiwen Yu & Cheng Zhang & Yan Wu, 2019. "Flight Schedule Recovery: A Simulation-Based Approach," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-19, December.
    8. Nianyi Wang & Huiling Wang & Shan Pei & Boyu Zhang, 2023. "A Data-Driven Heuristic Method for Irregular Flight Recovery," Mathematics, MDPI, vol. 11(11), pages 1-22, June.
    9. Uğur Arıkan & Sinan Gürel & M. Selim Aktürk, 2017. "Flight Network-Based Approach for Integrated Airline Recovery with Cruise Speed Control," Transportation Science, INFORMS, vol. 51(4), pages 1259-1287, November.
    10. Brouer, Berit D. & Dirksen, Jakob & Pisinger, David & Plum, Christian E.M. & Vaaben, Bo, 2013. "The Vessel Schedule Recovery Problem (VSRP) – A MIP model for handling disruptions in liner shipping," European Journal of Operational Research, Elsevier, vol. 224(2), pages 362-374.
    11. Abdelghany, Khaled F. & Abdelghany, Ahmed F. & Ekollu, Goutham, 2008. "An integrated decision support tool for airlines schedule recovery during irregular operations," European Journal of Operational Research, Elsevier, vol. 185(2), pages 825-848, March.
    12. Birolini, Sebastian & Jacquillat, Alexandre, 2023. "Day-ahead aircraft routing with data-driven primary delay predictions," European Journal of Operational Research, Elsevier, vol. 310(1), pages 379-396.
    13. Uğur Arıkan & Sinan Gürel & M. Aktürk, 2016. "Integrated aircraft and passenger recovery with cruise time controllability," Annals of Operations Research, Springer, vol. 236(2), pages 295-317, January.
    14. Ma, Hoi-Lam & Sun, Yige & Chung, Sai-Ho & Chan, Hing Kai, 2022. "Tackling uncertainties in aircraft maintenance routing: A review of emerging technologies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    15. Hu, Yuzhen & Song, Yan & Zhao, Kang & Xu, Baoguang, 2016. "Integrated recovery of aircraft and passengers after airline operation disruption based on a GRASP algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 97-112.
    16. Vieira, Thiago & De La Vega, Jonathan & Tavares, Roberto & Munari, Pedro & Morabito, Reinaldo & Bastos, Yan & Ribas, Paulo César, 2021. "Exact and heuristic approaches to reschedule helicopter flights for personnel transportation in the oil industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    17. Stephen J. Maher, 2016. "Solving the Integrated Airline Recovery Problem Using Column-and-Row Generation," Transportation Science, INFORMS, vol. 50(1), pages 216-239, February.
    18. Zhao, Ai & Bard, Jonathan F. & Bickel, J. Eric, 2023. "A two-stage approach to aircraft recovery under uncertainty," Journal of Air Transport Management, Elsevier, vol. 111(C).
    19. Obrad Babić & Milica Kalić & Goran Pavković & Slavica Dožić & Mirjana Čangalović, 2010. "Heuristic approach to the airline schedule disturbances problem," Transportation Planning and Technology, Taylor & Francis Journals, vol. 33(3), pages 257-280, February.
    20. Qin, Yichen & Ng, Kam K.H., 2023. "Analysing the impact of collaborations between airlines and maintenance service company under MRO outsourcing mode: Perspective from airline's operations," Journal of Air Transport Management, Elsevier, vol. 109(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opmare:v:18:y:2025:i:2:d:10.1007_s12063-024-00530-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.