Author
Listed:
- Xiaobin Li
(Henan Polytechnic University
Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region)
- Yunbo Li
(Henan Polytechnic University
Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region)
- Junting Tang
(Henan Polytechnic University)
Abstract
Mine gas disaster prediction and prevention are based on gas content measurement, which results in initial stage loss when determining coal gas desorption contents in engineering applications. We propose a Bayesian probability statistical method in the coal gas desorption model on the basis of constrained prior information. First, we use a self-made coal sample gas desorption device to test initial stage gas desorption data of tectonic coal and undeformed coal. Second, we calculate the initial stage loss of different coal samples with the power exponential function parameters by using Bayesian probability statistics and least squares estimation. Results show that Bayesian probability statistics and least squares estimation can be used to obtain regression and desorption coefficients, thereby illustrating the Bayesian estimation method’s validity and reliability. Given that the Bayesian probability method can apply prior information to constrain the model’s posterior parameters, it provides results that are statistically significant in the initial stage loss of coal gas desorption by connecting observation data and prior information.
Suggested Citation
Xiaobin Li & Yunbo Li & Junting Tang, 2019.
"Determining the initial stage loss content of tectonic coal gas desorption via the Bayesian probability method,"
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 83-97, May.
Handle:
RePEc:spr:nathaz:v:97:y:2019:i:1:d:10.1007_s11069-019-03627-y
DOI: 10.1007/s11069-019-03627-y
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:97:y:2019:i:1:d:10.1007_s11069-019-03627-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.