IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v94y2018i1d10.1007_s11069-018-3384-y.html
   My bibliography  Save this article

Impact of forecasted land use changes on flood risk in the Polish Carpathians

Author

Listed:
  • Marcin Szwagrzyk

    (Jagiellonian University)

  • Dominik Kaim

    (Jagiellonian University)

  • Bronwyn Price

    (Swiss Federal Research Institute WSL)

  • Agnieszka Wypych

    (Jagiellonian University)

  • Ewa Grabska

    (Jagiellonian University)

  • Jacek Kozak

    (Jagiellonian University)

Abstract

Flooding is a major environmental hazard in Poland with risks that are likely to increase in the future. Land use and land cover (LULC) have a strong influencing on flood risk. In the Polish Carpathians, the two main projected land use change processes are forest expansion and urbanization. These processes have a contradictory impact on flood risk, which makes the future impact of LULC changes on flooding in the Carpathians hard to estimate. In this paper, we investigate the impact of the projected LULC changes on future flood risk in the Polish Carpathians for the test area of Ropa river basin. We used three models of spatially explicit future LULC scenarios for the year 2060. We conduct hydrological simulations for the current state and for the three projected land use scenarios (trend extrapolation, ‘liberalization’ and ‘self-sufficiency’). In addition, we calculated the amount of flood-related monetary losses, based on the current flood plain area and both actual and projected land use maps under each of the three scenarios. The results show that in the Ropa river, depending on scenario, either peak discharge decreases due to the forest expansion or the peak discharge remains constant—the impact of LULC changes on the hydrology of such mountainous basins is relatively low. However, the peak discharges are very diverse across sub-catchments within the modeling area. Despite the overall decrease of peak discharge, there are areas of flow increase and there is a substantial projected increase in flood-related monetary losses within the already flood-prone areas, related to the projected degree of urbanization.

Suggested Citation

  • Marcin Szwagrzyk & Dominik Kaim & Bronwyn Price & Agnieszka Wypych & Ewa Grabska & Jacek Kozak, 2018. "Impact of forecasted land use changes on flood risk in the Polish Carpathians," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 227-240, October.
  • Handle: RePEc:spr:nathaz:v:94:y:2018:i:1:d:10.1007_s11069-018-3384-y
    DOI: 10.1007/s11069-018-3384-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3384-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3384-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdurrahim Aydın & Remzi Eker, 2022. "Future land use/land cover scenarios considering natural hazards using Dyna-CLUE in Uzungöl Nature Conservation Area (Trabzon-NE Türkiye)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2683-2707, December.
    2. José Edmundo de-Almeida-e-Pais & Hugo D. N. Raposo & José Torres Farinha & Antonio J. Marques Cardoso & Svitlana Lyubchyk & Sergiy Lyubchyk, 2023. "Measuring the Performance of a Strategic Asset Management Plan through a Balanced Scorecard," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    3. Shixiong Yan & Yuannan Long & Huaiguang He & Xiaofeng Wen & Qian Lv & Moruo Zheng, 2023. "Flood response to urban expansion in the Lushui River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 779-805, January.
    4. Yulianto Fajar & Suwarsono & Nugroho Udhi Catur & Khomarudin Muhammad Rokhis & Nugroho Nunung Puji & Sunarmodo Wismu, 2020. "Spatial-Temporal Dynamics Land Use/Land Cover Change and Flood Hazard Mapping in the Upstream Citarum Watershed, West Java, Indonesia," Quaestiones Geographicae, Sciendo, vol. 39(1), pages 125-146, March.
    5. Andrzej Gruchot & Tymoteusz Zydroń & Andrzej Wałęga & Jana Pařílková & Jacek Stanisz, 2022. "Influence of Rainfall Events and Surface Inclination on Overland and Subsurface Runoff Formation on Low-Permeable Soil," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
    6. Adnan, Mohammed Sarfaraz Gani & Abdullah, Abu Yousuf Md & Dewan, Ashraf & Hall, Jim W., 2020. "The effects of changing land use and flood hazard on poverty in coastal Bangladesh," Land Use Policy, Elsevier, vol. 99(C).
    7. Fang Wei & Lvwang Zhao, 2022. "The Effect of Flood Risk on Residential Land Prices," Land, MDPI, vol. 11(10), pages 1-18, September.
    8. Muhammad Aslam Baig & Donghong Xiong & Mahfuzur Rahman & Md. Monirul Islam & Ahmed Elbeltagi & Belayneh Yigez & Dil Kumar Rai & Muhammad Tayab & Ashraf Dewan, 2022. "How do multiple kernel functions in machine learning algorithms improve precision in flood probability mapping?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1543-1562, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:94:y:2018:i:1:d:10.1007_s11069-018-3384-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.