IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v84y2016i2d10.1007_s11069-016-2448-0.html
   My bibliography  Save this article

Fully nonlinear Boussinesq equations for long wave propagation and run-up in sloping channels with parabolic cross sections

Author

Listed:
  • G. Pedersen

    (University of Oslo)

Abstract

A general framework for derivation of long wave equations in narrow channels, and their transformation to Lagrangian coordinates is briefly established. Then, fully nonlinear Boussinesq equations are derived for channels of parabolic cross sections. The simplified version with normal nonlinearity is compared with corresponding models from the literature, and propagation properties are discussed. A Lagrangian run-up model is adapted to the fully nonlinear set. This model is tested by means of controlled residues and by a well-controlled comparison to exact analytic solutions from the literature. Then, run-up of solitary waves in simple geometries is simulated and compared to a semi-analytic solution that is derived for propagation and run-up in a composite channel. The dispersive model retains the higher run-up height in a parabolic channels, as reported in the recent literature for NLSW solutions, as compared to a rectangular channel.

Suggested Citation

  • G. Pedersen, 2016. "Fully nonlinear Boussinesq equations for long wave propagation and run-up in sloping channels with parabolic cross sections," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 599-619, November.
  • Handle: RePEc:spr:nathaz:v:84:y:2016:i:2:d:10.1007_s11069-016-2448-0
    DOI: 10.1007/s11069-016-2448-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2448-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2448-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:84:y:2016:i:2:d:10.1007_s11069-016-2448-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.