IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v78y2015i1p155-178.html
   My bibliography  Save this article

Application of time- and magnitude-predictable model for long-term earthquake prediction in Iran

Author

Listed:
  • H. Zafarani
  • S. Ghafoori
  • M. Adlparvar
  • P. Rajaeian
  • A. Hasankhani

Abstract

The regional time- and magnitude-predictable model has been applied successfully in diverse regions of the world to describe the occurrence of main shocks. In the current study, the model has been calibrated against the historical and instrumental catalog of Iranian earthquakes. The Iranian plateau is divided into 15 seismogenic provinces; then, the interevent times for strong main shocks have been determined for each one. The empirical relations reported by Papazachos et al. (Tectonophysics 271:295–323, 1997a ) for the Alpine–Himalayan belt (including Iran) were adopted except for the constant terms that were calculated separately for every seismotectonic area. By using the calibrated equations developed for the study area and taking into account the occurrence time and magnitude of the last main shocks in each seismogenic source, the time-dependent conditional probabilities of occurrence P(∆t) of the next main shocks during next 10, 20, 30, 40 and 50 years as well as the magnitude of the expected main shocks (M f ) have been estimated. The immediate probability (within next 10 years) of a large main shock is estimated to be high and moderate (>35 %) in all regions except zones 9 (M f = 5.8) and 15 (M f = 6.1). However, it should be noted that the probabilities have been estimated for different M f values in 15 regions. Comparing the model predictions with the actual earthquake occurrence rates shows the good performance of the model for Iranian plateau. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • H. Zafarani & S. Ghafoori & M. Adlparvar & P. Rajaeian & A. Hasankhani, 2015. "Application of time- and magnitude-predictable model for long-term earthquake prediction in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 155-178, August.
  • Handle: RePEc:spr:nathaz:v:78:y:2015:i:1:p:155-178
    DOI: 10.1007/s11069-015-1708-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1708-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1708-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Yadav & D. Shanker & S. Chopra & A. Singh, 2010. "An application of regional time and magnitude predictable model for long-term earthquake prediction in the vicinity of October 8, 2005 Kashmir Himalaya earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 985-1014, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashutosh Chamoli & R. Yadav, 2015. "Multifractality in seismic sequences of NW Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 19-32, May.
    2. Nilgün Sayıl, 2013. "Long-term earthquake prediction in western Anatolia with the time- and magnitude-predictable model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 809-834, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:78:y:2015:i:1:p:155-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.