IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v74y2014i2p1263-1290.html
   My bibliography  Save this article

A prototype system for space–time assessment of rainfall-induced shallow landslides in Italy

Author

Listed:
  • Lorella Montrasio
  • Roberto Valentino
  • Angela Corina
  • Lauro Rossi
  • Roberto Rudari

Abstract

In the last decades, physically based distributed models turned out rather promising to achieve the space–time assessment of shallow landslides at large spatial scale. This technical note deals with the application of a physically based stability model named Shallow Landslides Instability Prediction (SLIP), which has been adopted by the Department of National Civil Protection of Italy as a prototype early warning system for rainfall-induced shallow landslides on national scale. The model is used as a main methodology to create space–time shallow landslide susceptibility maps based on a simple deterministic slope-stability approach, combined with high-resolution rainfall information and geographic information system-based geospatial datasets. The safety factor as an index to measure slope instability is modeled as function of topographic, geologic, geotechnical and hydrologic variables. Although the main aim of this work was to prove the operational viability of such model on a nationwide domain and some simplification are adopted at this stage, hind cast tests on some relevant case histories of shallow landslides occurred between October 2009 and October 2011 showed that the model has skill in representing both timing and location of those shallow landslides. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Lorella Montrasio & Roberto Valentino & Angela Corina & Lauro Rossi & Roberto Rudari, 2014. "A prototype system for space–time assessment of rainfall-induced shallow landslides in Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 1263-1290, November.
  • Handle: RePEc:spr:nathaz:v:74:y:2014:i:2:p:1263-1290
    DOI: 10.1007/s11069-014-1239-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1239-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1239-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zonghu Liao & Yang Hong & Dalia Kirschbaum & Robert Adler & Jonathan Gourley & Rick Wooten, 2011. "Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: a case study in Macon County, North Carol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 325-339, July.
    2. Giuseppe Sorbino & Carlo Sica & Leonardo Cascini, 2010. "Susceptibility analysis of shallow landslides source areas using physically based models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(2), pages 313-332, May.
    3. Lorella Montrasio & Roberto Valentino & Gian Losi, 2012. "Shallow landslides triggered by rainfalls: modeling of some case histories in the Reggiano Apennine (Emilia Romagna Region, Northern Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1231-1254, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ekrem Canli & Bernd Loigge & Thomas Glade, 2018. "Spatially distributed rainfall information and its potential for regional landslide early warning systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 103-127, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yinping Nie & Xiuzhen Li & Wendy Zhou & Ruichi Xu, 2021. "Dynamic hazard assessment of group-occurring debris flows based on a coupled model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2635-2661, April.
    2. Kyungjin An & Suyeon Kim & Taebyeong Chae & Daeryong Park, 2018. "Developing an Accessible Landslide Susceptibility Model Using Open-Source Resources," Sustainability, MDPI, vol. 10(2), pages 1-13, January.
    3. D. W. Park & S. R. Lee & N. N. Vasu & S. H. Kang & J. Y. Park, 2016. "Coupled model for simulation of landslides and debris flows at local scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1653-1682, April.
    4. Cheng Lian & Zhigang Zeng & Wei Yao & Huiming Tang, 2013. "Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 759-771, March.
    5. Shiang-Jen Wu & Yi-Hua Hsiao & Keh-Chia Yeh & Sheng-Hsueh Yang, 2017. "A probabilistic model for evaluating the reliability of rainfall thresholds for shallow landslides based on uncertainties in rainfall characteristics and soil properties," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 469-513, May.
    6. Sebastiano Perriello Zampelli & Eliana Bellucci Sessa & Marco Cavallaro, 2012. "Application of a GIS-aided method for the assessment of volcaniclastic soil sliding susceptibility to sample areas of Campania (Southern Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 155-168, March.
    7. Hyuck-Jin Park & Kang-Min Kim & In-Tak Hwang & Jung-Hyun Lee, 2022. "Regional Landslide Hazard Assessment Using Extreme Value Analysis and a Probabilistic Physically Based Approach," Sustainability, MDPI, vol. 14(5), pages 1-17, February.
    8. Dimitrios Myronidis & Charalambos Papageorgiou & Stavros Theophanous, 2016. "Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 245-263, March.
    9. Marco Materazzi & Margherita Bufalini & Matteo Gentilucci & Gilberto Pambianchi & Domenico Aringoli & Piero Farabollini, 2021. "Landslide Hazard Assessment in a Monoclinal Setting (Central Italy): Numerical vs. Geomorphological Approach," Land, MDPI, vol. 10(6), pages 1-22, June.
    10. Dimitrios Myronidis & Charalambos Papageorgiou & Stavros Theophanous, 2016. "Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 245-263, March.
    11. E. Piegari & R. Di Maio, 2014. "Simulations of landslide hazard scenarios by a geophysical safety factor," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(1), pages 63-76, August.
    12. Filippo Brandolini & Chiara Compostella & Manuela Pelfini & Sam Turner, 2023. "The Evolution of Historic Agroforestry Landscape in the Northern Apennines (Italy) and Its Consequences for Slope Geomorphic Processes," Land, MDPI, vol. 12(5), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:74:y:2014:i:2:p:1263-1290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.