IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v74y2014i1p11-23.html
   My bibliography  Save this article

Meteotsunami forecasting: sensitivities demonstrated by the 2008 Boothbay, Maine, event

Author

Listed:
  • P. Whitmore
  • B. Knight

Abstract

To support development of a meteotsunami forecasting capability for the USA, the National Oceanic and Atmospheric Administration funded a project in 2011 focused on meteotsunami forecasting for the US east coast. Meteotsunami forecasting shares many similarities with traditional tsunami forecasting, though the characterization and integration of the source with numerical forecast models is much different. Given meteotsunami source characterization through atmospheric observations and models, it is conceivable that meteotsunami alerts could be issued and their impact forecasted using existing tsunami forecast models with high-resolution coastal definition. To test this, the 2008 Boothbay, Maine, meteotsunami is simulated using an atmospheric source consisting of a moving pressure disturbance coupled with a tsunami forecast model. Sensitivities of the modeled impact to the source characteristics, such as speed, wavelength, and direction, are also tested. Results show that the observed impact can be re-created through numerical modeling when the pressure disturbance period is roughly matched with the harbor resonance and observed meteotsunami period. Copyright US Government 2014

Suggested Citation

  • P. Whitmore & B. Knight, 2014. "Meteotsunami forecasting: sensitivities demonstrated by the 2008 Boothbay, Maine, event," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 11-23, October.
  • Handle: RePEc:spr:nathaz:v:74:y:2014:i:1:p:11-23
    DOI: 10.1007/s11069-014-1056-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1056-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1056-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenji Tanaka, 2012. "On meteotsunamis around Tsushima Strait generated by the Baiu front," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 805-822, September.
    2. Vasily Titov & Frank Gonzalez & E. Bernard & Marie Eble & Harold Mofjeld & Jean Newman & Angie Venturato, 2005. "Real-Time Tsunami Forecasting: Challenges and Solutions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 35(1), pages 35-41, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viacheslav K. Gusiakov, 2021. "Meteotsunamis at global scale: problems of event identification, parameterization and cataloguing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1105-1123, March.
    2. Wei Cheng & Juan Horrillo & Richards Sunny, 2022. "Numerical analysis of meteotsunamis in the Northeastern Gulf of Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1719-1734, February.
    3. B. Mourre & A. Santana & A. Buils & L. Gautreau & M. Ličer & A. Jansà & B. Casas & B. Amengual & J. Tintoré, 2021. "On the potential of ensemble forecasting for the prediction of meteotsunamis in the Balearic Islands: sensitivity to atmospheric model parameterizations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1315-1336, March.
    4. Petra Zemunik & Angelo Bonanno & Salvatore Mazzola & Giovanni Giacalone & Ignazio Fontana & Simona Genovese & Gualtiero Basilone & Julio Candela & Jadranka Šepić & Ivica Vilibić & Salvatore Aronica, 2021. "Observing meteotsunamis (“Marrobbio”) on the southwestern coast of Sicily," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1337-1363, March.
    5. Michael Angove & Lewis Kozlosky & Philip Chu & Greg Dusek & Greg Mann & Eric Anderson & James Gridley & Diego Arcas & Vasily Titov & Marie Eble & Kimberly McMahon & Brian Hirsch & Walt Zaleski, 2021. "Addressing the meteotsunami risk in the united states," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1467-1487, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ignacio Barranco & Vicente Gracia & Joan Pau Sierra & Hector Perea & Xavier Gironella, 2017. "Tsunami hazards in the Catalan Coast, a low-intensity seismic activity area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1273-1295, September.
    2. N. Nirupama, 2013. "Tsunami versus storm surge: a brief review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 1123-1130, October.
    3. Mark Buckley & Yong Wei & Bruce Jaffe & Steve Watt, 2012. "Inverse modeling of velocities and inferred cause of overwash that emplaced inland fields of boulders at Anegada, British Virgin Islands," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(1), pages 133-149, August.
    4. F. Dall’Osso & D. Dominey-Howes & C. Tarbotton & S. Summerhayes & G. Withycombe, 2016. "Revision and improvement of the PTVA-3 model for assessing tsunami building vulnerability using “international expert judgment”: introducing the PTVA-4 model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1229-1256, September.
    5. Yu Huang & Chongqiang Zhu, 2015. "Numerical analysis of tsunami–structure interaction using a modified MPS method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2847-2862, February.
    6. Paul Platzer & Jean-François Filipot & Philippe Naveau & Pierre Tandeo & Pascal Yiou, 2020. "Wave group focusing in the ocean: estimations using crest velocities and a Gaussian linear model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2431-2449, December.
    7. Chen-Chieh Feng & Yi-Chen Wang, 2011. "GIScience research challenges for emergency management in Southeast Asia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 597-616, October.
    8. Daniel M. Percival & Donald B. Percival & Donald W. Denbo & Edison Gica & Paul Y. Huang & Harold O. Mofjeld & Michael C. Spillane, 2014. "Automated Tsunami Source Modeling Using the Sweeping Window Positive Elastic Net," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 491-499, June.
    9. M. Ripepe & G. Lacanna, 2024. "Volcano generated tsunami recorded in the near source," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Kenji Tanaka & Shinichiro Gohara & Takayuki Koga & Ryuta Yamaguchi & Fumihiko Yamada, 2014. "Abiki oscillations in Sakitsu Bay, west Kyushu, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 233-250, October.
    11. Zhiguo Xu & Shanshan Liang & Mohd Nashriq Bin Abd Rahman & Hongwei Li & Jianyu Shi, 2021. "Historical earthquakes, tsunamis and real-time earthquake monitoring for tsunami advisory in the South China Sea region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 771-793, May.
    12. Charles McCreery, 2005. "Impact of the National Tsunami Hazard Mitigation Program on Operations of the Richard H. Hagemeyer Pacific Tsunami Warning Center," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 35(1), pages 73-88, May.
    13. Rhett Butler & David Walsh & Kevin Richards, 2017. "Extreme tsunami inundation in Hawai‘i from Aleutian–Alaska subduction zone earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1591-1619, February.
    14. Brian McAdoo & Andrew Moore & Jennifer Baumwoll, 2009. "Indigenous knowledge and the near field population response during the 2007 Solomon Islands tsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(1), pages 73-82, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:74:y:2014:i:1:p:11-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.