IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v71y2014i3p1861-1872.html
   My bibliography  Save this article

Groundwater outbursts from faults above a confined aquifer in the coal mining

Author

Listed:
  • Rui Zhang
  • Zhenquan Jiang
  • Haiyang Zhou
  • Chaowei Yang
  • Shuaijun Xiao

Abstract

Groundwater outburst has an impartible relationship with geological structures such as water-conducting faults, which are widely distributed in north China. In order to study the seepage property and mechanism of water outburst from the faults above a confined aquifer in the coal mining, the simulation model of ground water inrush for fault was designed. The water outburst parameters, such as water inflow, permeability, seepage velocity, porosity and other variables under different material combination and water pressures, were obtained; the research results indicate as follows: (1) The changes of the water inflow can be divided into three stages, i.e., the water inflow slowly increases at the early stage, rapidly increases at the middle stage and keeps unchanged at the late stage. (2) The seepage process can be represented by the seepage combination types, which are composed of pore flow, fissure flow and pipe flow, and the seepage changes not only with time but also with different conditions. (3) Mining would lead to the reactivation of faults and further enhance the permeability of fault zone potentially. The tiny granules in fault would be eroded and moved to exterior as the time under the high water pressure and lead to the change of porosity parameters. In this case, the seepage velocity would increase ceaselessly, and then the seepage would convert into pipe flow and finally lead to water inrush accidents. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Rui Zhang & Zhenquan Jiang & Haiyang Zhou & Chaowei Yang & Shuaijun Xiao, 2014. "Groundwater outbursts from faults above a confined aquifer in the coal mining," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1861-1872, April.
  • Handle: RePEc:spr:nathaz:v:71:y:2014:i:3:p:1861-1872
    DOI: 10.1007/s11069-013-0981-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0981-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0981-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rui Zhang & Zhenquan Jiang & Qiang Sun & Shuyun Zhu, 2013. "The relationship between the deformation mechanism and permeability on brittle rock," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1179-1187, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Huang & Wei Zeng & Yun Wu & ShiJie Li & Kui Zhao, 2019. "Experimental investigation of fracture propagation and inrush characteristics in tunnel construction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 193-210, May.
    2. Xiaohong Niu & Guorui Feng & Qin Liu & Yanna Han & Ruipeng Qian, 2022. "Numerical investigation on mechanism and fluid flow behavior of goaf water inrush: a case study of Dongyu coal mine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1783-1802, September.
    3. Haitao Yu & Shuyun Zhu & Huadong Xie & Junhua Hou, 2020. "Numerical simulation of water inrush in fault zone considering seepage paths," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1763-1779, November.
    4. Dan Ma & Haibo Bai, 2015. "Groundwater inflow prediction model of karst collapse pillar: a case study for mining-induced groundwater inrush risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1319-1334, March.
    5. Shangxian Yin & Jincai Zhang & Demin Liu, 2015. "A study of mine water inrushes by measurements of in situ stress and rock failures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1961-1979, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Ma & Haibo Bai, 2015. "Groundwater inflow prediction model of karst collapse pillar: a case study for mining-induced groundwater inrush risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1319-1334, March.
    2. Gangwei Fan & Shizhong Zhang & Bobo Cao & Dongsheng Zhang & Chengguo Zhang, 2020. "Impact of Mine Panel Size on Hydraulic Permeability of Weakly Cemented Strata," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    3. Yuan Zhao & Shugang Cao & Yong Li & Hongyun Yang & Ping Guo & Guojun Liu & Ruikai Pan, 2018. "Experimental and numerical investigation on the effect of moisture on coal permeability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1201-1221, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:71:y:2014:i:3:p:1861-1872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.