IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v70y2014i2p1209-1230.html
   My bibliography  Save this article

Impact of FORMOSAT-3/COSMIC radio occultation data on the prediction of super cyclone Gonu (2007): a case study

Author

Listed:
  • S. Anisetty
  • Ching-Yuang Huang
  • Shu-Ya Chen

Abstract

This study aims to present an encouraging example of prediction of super cyclone Gonu over the northern Indian Ocean in 2007. A series of experiments are conducted using the advanced Weather Research and Forecasting model with three-dimensional variational method to assimilate GPS RO refractivity from FORMOSAT-3/COSMIC (hereafter referred as GPS) and radiosonde sounding (GTS) to highlight the relative impact of GPS RO data on model prediction. Significant differences in cyclone track and intensity prediction are exhibited in various experiments with and without cyclic assimilations. Both cold-start (non-cyclic) and hot-start (cyclic) runs with GPS RO data exhibit improvement on later track prediction compared to the control run without data assimilation. GPS experiment outperforms other experiments including GTS in track prediction with the smallest cross-track error. Sensitivity tests were also conducted to identify which GPS RO sounding gives more impact on track prediction. We found that the sounding closest to the cyclone exhibits the largest contribution to track prediction. Assimilation of the RO soundings in the vicinity of Gonu cyclone appears to modify the environmental conditions that result in a later development of a couplet of high and low pressure, leading to a positive impact on track prediction. Sensitivity experiments indicate that the initial information retrieved by GPS data at upper levels that produce colder temperature increments indeed contributes more improvement to track prediction. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • S. Anisetty & Ching-Yuang Huang & Shu-Ya Chen, 2014. "Impact of FORMOSAT-3/COSMIC radio occultation data on the prediction of super cyclone Gonu (2007): a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1209-1230, January.
  • Handle: RePEc:spr:nathaz:v:70:y:2014:i:2:p:1209-1230
    DOI: 10.1007/s11069-013-0870-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0870-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0870-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jayaraman Potty & S. Oo & P. Raju & U. Mohanty, 2012. "Performance of nested WRF model in typhoon simulations over West Pacific and South China Sea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(3), pages 1451-1470, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuaikang Zhao & Ziwei Liu & Xiaoran Wei & Bo Li & Yefei Bai, 2021. "Intercomparison of Empirical Formulations of Maximum Wind Radius in Parametric Tropical Storm Modeling over Zhoushan Archipelago," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    2. Tanvir Islam & Prashant Srivastava & Miguel Rico-Ramirez & Qiang Dai & Manika Gupta & Sudhir Singh, 2015. "Tracking a tropical cyclone through WRF–ARW simulation and sensitivity of model physics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1473-1495, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanvir Islam & Prashant Srivastava & Miguel Rico-Ramirez & Qiang Dai & Manika Gupta & Sudhir Singh, 2015. "Tracking a tropical cyclone through WRF–ARW simulation and sensitivity of model physics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1473-1495, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:70:y:2014:i:2:p:1209-1230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.