IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v70y2014i1p803-819.html
   My bibliography  Save this article

Evaluation of drainage networks under moving storms utilizing the equivalent stationary storms

Author

Listed:
  • Yongwon Seo
  • Arthur Schmidt

Abstract

This paper investigates the effect of rainstorm movement on the peak discharge response (PDR) of drainage networks by comparing it with the corresponding equivalent stationary and uniform rainfall. A synthetic circular watershed is introduced to avoid biases from interaction between catchment geometry and storm orientation. The drainage network of the watershed is simulated by the Gibbsian model to examine the effect of network configuration on the peak response depending on the storm kinematics. This study utilizes two types of the equivalent stationary storm (ESS): the average rainfall intensity over the entire catchment (ESSAV) and the point stationary rainfall intensity (ESSQ) to evaluate the effect of moving rainstorms in terms of the PDR. The results show that there exists an interval in which the same rainfall duration produces higher peak responses for moving storms compared with ESSQ. The augmentation of the peak response by moving rainstorm is dependent on the relative rainstorm speed, size, and direction as well as drainage network configuration of the catchment; especially, the results show that a less efficient network tends to mitigate the effect of rainstorm movement on peak response. In contrast, a more efficient network is more sensitive to storm kinematics and the peak response increases compared with ESS. Therefore, the results in this study imply a potential improvement in urban drainage networks in terms of efficiency as well as safety to moving rainstorms. Also, this study suggests the range of variation in peak flows due to storm kinematics compared with the ESS, which can be a reference to the current design practices. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Yongwon Seo & Arthur Schmidt, 2014. "Evaluation of drainage networks under moving storms utilizing the equivalent stationary storms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 803-819, January.
  • Handle: RePEc:spr:nathaz:v:70:y:2014:i:1:p:803-819
    DOI: 10.1007/s11069-013-0845-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0845-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0845-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:70:y:2014:i:1:p:803-819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.