IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v69y2013i1p953-964.html
   My bibliography  Save this article

Site classification of Pondicherry using shear-wave velocity and horizontal-to-vertical spectral ratio

Author

Listed:
  • S. Trupti
  • K. Goverdhan
  • K. Srinivas
  • P. Prabhakar Prasad
  • T. Seshunarayana

Abstract

Site classification studies play a vital role in earthquake hazard assessment since in situ ground conditions substantially affect the characteristics of incoming seismic waves during earthquakes. Flat areas along the coast and rivers generally consist of thick layers of soft clay and sand. Such deposits amplify certain frequencies of ground motion, thereby attributing to an increase in the damage due to an earthquake. Hence, site classification studies have been carried out using shear-wave velocity, ground response, and corresponding amplification at 83 locations in Pondicherry, a coastal city in India. The present study is aimed at estimating the shear-wave velocity through multichannel analysis of surface waves and to compute the average shear-wave velocity (V S 30 ), stiffness, and N values using empirical relations. Further, site-response studies (horizontal-to-vertical spectral ratio) were conducted to estimate the ground-response frequencies and corresponding amplifications through Nakamura technique. From the results, the study area was classified into three types, i.e., C-class: with V S 30 in the range of 360–760 m/s, D-class: with V S 30 in the range of 180–360 m/s, and E-class: with V S 30 > 180 m/s following the National Earthquake Hazard Reduction Programme norms (BSSC in NEHRP recommended provisions for seismic regulations for new buildings and other structures (FEMA 450), part 1: provisions. Building Seismic Safety Council for the Federal Emergency Management Agency, Washington, 2003 ). Finally, a site classification map for Pondicherry region has been prepared, which can be used in urban planning and strengthening of existing structures against future earthquakes. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • S. Trupti & K. Goverdhan & K. Srinivas & P. Prabhakar Prasad & T. Seshunarayana, 2013. "Site classification of Pondicherry using shear-wave velocity and horizontal-to-vertical spectral ratio," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 953-964, October.
  • Handle: RePEc:spr:nathaz:v:69:y:2013:i:1:p:953-964
    DOI: 10.1007/s11069-013-0746-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0746-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0746-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Sitharam & P. Anbazhagan, 2007. "Seismic Hazard Analysis for the Bangalore Region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(2), pages 261-278, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Swathi Priyadarsini Putti & Neelima Satyam Devarakonda & Ikuo Towhata, 2019. "Estimation of ground response and local site effects for Vishakhapatnam, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 555-578, June.
    2. T. Sitharam & K. Vipin, 2011. "Evaluation of spatial variation of peak horizontal acceleration and spectral acceleration for south India: a probabilistic approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 639-653, November.
    3. K. Vipin & T. Sitharam & P. Anbazhagan, 2010. "Probabilistic evaluation of seismic soil liquefaction potential based on SPT data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(3), pages 547-560, June.
    4. S. Elayaraja & S. Chandrasekaran & G. Ganapathy, 2015. "Evaluation of seismic hazard and potential of earthquake-induced landslides of the Nilgiris, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1997-2015, September.
    5. P. Anbazhagan & J. Vinod & T. Sitharam, 2009. "Probabilistic seismic hazard analysis for Bangalore," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 145-166, February.
    6. Mehmet Alpyürür & Musaffa Ayşen Lav, 2022. "An assessment of probabilistic seismic hazard for the cities in Southwest Turkey using historical and instrumental earthquake catalogs," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 335-365, October.
    7. Y. Bulent Sonmezer & Ilker Kalkan & Selcuk Bas & S. Oguzhan Akbas, 2018. "Effects of the use of the surface spectrum of a specific region on seismic performances of R/C structures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1203-1229, September.
    8. Kaustav Chatterjee & Deepankar Choudhury, 2013. "Variations in shear wave velocity and soil site class in Kolkata city using regression and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 2057-2082, December.
    9. Abhishek Kumar & N. H. Harinarayan & Olympa Baro, 2017. "Nonlinear soil response to ground motions during different earthquakes in Nepal, to arrive at surface response spectra," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 13-33, May.
    10. Mithila Verma & R. Singh & B. Bansal, 2014. "Soft sediments and damage pattern: a few case studies from large Indian earthquakes vis-a-vis seismic risk evaluation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1829-1851, December.
    11. Priyanka Ghosh & Rajusha Kumari, 2012. "Seismic interference of two nearby horizontal strip anchors in layered soil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 789-804, September.
    12. Asim Bashir & Dhiman Basu, 2018. "Revisiting probabilistic seismic hazard analysis of Gujarat: an assessment of Indian design spectra," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1127-1164, April.
    13. Nisha Naik & Deepankar Choudhury, 2015. "Deterministic seismic hazard analysis considering different seismicity levels for the state of Goa, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 557-580, January.
    14. Sumedh Mhaske & Deepankar Choudhury, 2011. "Geospatial contour mapping of shear wave velocity for Mumbai city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 317-327, October.
    15. Panjamani Anbazhagan & Prabhu Gajawada & Aditya Parihar, 2012. "Seismic hazard map of Coimbatore using subsurface fault rupture," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1325-1345, February.
    16. Sarika Desai & Deepankar Choudhury, 2014. "Spatial variation of probabilistic seismic hazard for Mumbai and surrounding region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1873-1898, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:69:y:2013:i:1:p:953-964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.